
Challenges for Efficient Query Evaluation
on Structured Probabilistic Data

Antoine Amarilli1, Silviu Maniu2, and Mikaël Monet1

1 Télécom ParisTech, Université Paris-Saclay, France
2 LRI, Université Paris-Sud, Université Paris-Saclay, France

Abstract. Query answering over probabilistic data is an important task
but is generally intractable. However, a new approach for this problem
has recently been proposed, based on structural decompositions of input
databases, following, e.g., tree decompositions. This paper presents a
vision for a database management system for probabilistic data built
following this structural approach. We review our existing and ongoing
work on this topic and highlight many theoretical and practical challenges
that remain to be addressed.

1 Introduction
To have an accurate description of the real world, it is often necessary to associate
probabilities to our observations. For instance, experimental and scientific data
may be inherently uncertain, because, e.g., of imperfect sensor precision, harmful
interferences, or incorrect modelling. Even when crisp data can be obtained, it
can still be the case that we do not trust who retrieved it or how it came to
us. The notion of probabilistic databases has been introduced to capture this
uncertainty, reason over it, and query it: these databases are augmented with
probability information to describe how uncertain each data item is. Given a
probabilistic database D and a query q, the probabilistic query evaluation problem
(PQE) asks for the probability that the query q holds on D. Unfortunately, even
on the simplest probabilistic database models, PQE is generally intractable [14].

One possibility to work around this intractability is to use approximate
approaches, such as Monte Carlo sampling on the data instances. A different
direction was recently explored in [2], namely, restricting the kind of input
instances that we allow, in what we call the structural approach. It is shown
in [2] that the data complexity of PQE is linear if the instances have bounded
treewidth, i.e., they can be structurally decomposed in a tree-like structure where
each node must contain at most k elements, for a fixed parameter k. Moreover,
in [3], it is shown that bounding the instance treewidth is necessary to ensure the
tractability of PQE, because some queries are hard on any unbounded-treewidth
instance family (under some conditions). Hence, bounded-treewidth methods
seem to be the right way to make PQE tractable by the structural approach.

These theoretical works, however, left open the question of practical applica-
bility: many challenges must still be addressed to implement a practical system
using these techniques. First, obtaining an optimal decomposition of an arbitrary
instance is NP-hard [5]. Second, the complexity is only polynomial in the data,
with the query and parameter being fixed; this hides a constant which can be
exponential in the width k and non-elementary in the query q. Third, we do not

Tree automaton

Tree encoding

Boolean query

Lineage

circuit

42%

Probability∧

t1 t2

Probabilistic

instance

∃xyz R(x, y, y)

t1 0.2

R
x y z

t2 0.275
t3 0.3

a
b
c

a
b
d

prob.
Sec. 4

Sec. 3

Sec. 5

Fig. 1: Overview of the structural approach for PQE

know which real datasets can indeed be decomposed, at least partially, with a
small k.

This paper thus presents our vision of a database management system based
on the structural approach, and gives an overview of the research directions, both
theoretical and practical, which we intend to address to this end.

2 Probabilistic Query Evaluation: A Structural Approach
We first review our structural approach [2] for probabilistic query evaluation
(PQE). The approach is illustrated in Figure 1.

The approach applies to tuple-independent (TID) instances (but generalizes to
more expressive models [1]). Formally, a TID instance I is a relational database D
where each tuple t ∈ D has some probability pt. The TID I represents a probability
distribution over the subinstances D′ ⊆ D (subsets of facts): following the
independence assumption, the probability of D′ is

∏
t∈D′ pt ×

∏
t∈D\D′(1− pt).

We study the probabilistic query evaluation (PQE) problem: given a Boolean
query q and TID instance I, determine the probability that q holds on I, i.e., the
total probability of the subinstances of I that satisfy q. We refer to the combined
complexity of PQE when I and q are given as input; we refer to data complexity
when I is the input and q is fixed.

The first step of the structural approach (Section 3) is to translate the
query q to a formalism that can be efficiently evaluated. In the approach of [2],
following [13], the query is compiled to a tree automaton, i.e., a finite-state
automaton over trees [12]. The approach works for expressive queries written
in monadic second-order logic, which covers in particular first-order logic and
(unions of) conjunctive queries. This translation of the query is independent
from the instance, so does not affect data complexity; however, it depends on
a parameter k of the instance, to be defined soon. Intuitively, the automaton
represents an algorithm to evaluate the query on suitable instances.

The second step (Section 4) applies to the instance I, and computes a structural
decomposition of it. In [2], we compute a tree decomposition [10,11], equivalent
to junction trees in graphical models [19], and then a tree encoding over a finite
alphabet: the results of [3] show that tree decompositions are essentially the only

possible way to make PQE tractable. The parameter k measures how well I could
be decomposed: in our case, k is the treewidth, measuring how close I is to a
tree. By treelike instances, we mean instances whose treewidth is bounded by a
constant.

The third step (Section 5) is to compute a lineage of the query q on the
instance I, i.e., compute an object that represents concisely the subinstances of I
that satisfy q. This object can be used for PQE, as what we want to compute is
precisely the total probability of this set of subinstances. Specifically, we compute
a Boolean lineage circuit of the tree automaton for the query over the tree
encoding of the instance, according to the construction of [2]. This step is purely
symbolic and does not perform any numerical probability computation.

The fourth and last step is to evaluate efficiently the probability of the
query from this lineage representation, by computing the probability that the
circuit is true. This task cannot be performed efficiently on arbitrary Boolean
circuits, but it is feasible in our context, for two independent reasons [2, 3]. First,
this circuit can also be tree decomposed, which allows us to apply a message-
passing algorithm [19] for efficient probability computation. Second, in the case
where we made the query automaton deterministic [12], the circuit is actually a
d-DNNF [15], for which probabilistic query evaluation is tractable.

3 Efficient Compilation to Expressive Automata
Compiling the query to an automaton following the structural approach of [2],
by applying [13], is generally non-elementary in the query. This section presents
our main ideas to address this problem: we intend to restrict to tractable query
fragments, and to use more expressive automata targets to compile the query more
efficiently. These challenges are not specific to PQE; the next section presents
the lineage computation tasks, which are specific to PQE.

Efficient Compilation. Of course, we cannot hope to compile all Monadic
Second Order logic (MSO) to automata efficiently, or even all conjunctive queries
(CQs). Indeed, efficient compilation to automata implies that non-probabilistic
query evaluation is also tractable in combined complexity on treelike instances;
however, CQs are already hard to evaluate in this sense (even on fixed instances).
Hence, we can only hope to compile restricted query languages efficiently.

Many fragments are known from earlier work to enjoy efficient combined
query evaluation. In the database context, for instance, acyclic CQs can be
evaluated in polynomial combined complexity [23]. This generalizes to first-order
logical sentences that can be written with at most k variables, i.e., FOk [17].
However, it also generalizes to the guarded fragment (GF) [4], whose combined
complexity is also PTIME, and where better bounds can be derived if we know
the instance treewidth [9]. The tractability of GF, however, does not capture
other interesting query classes: reachability queries, and more generally two-way
regular path queries (2RPQs) and variants thereof [6], as well as Monadic Datalog
as in [16].

Our first task would thus be to develop an expressive query language that
captures GF, 2RPQs, and Monadic Datalog. Ideally this fragment should be

parameterized, i.e., all CQs or all FO queries q could be expressible in the fragment,
up to increasing some parameter kq, with the compilation being PTIME for
fixed kq but intractable in kq. We would then develop an efficient algorithm
to compile such queries to automata that check them on bounded-treewidth
instances, for fixed values of the query parameter kq and of the treewidth. Our
ongoing work in this direction investigates very recent extensions of GF with
negation and fixpoints [7, 8], for which compilation to automata was studied as
a tool for logical satisfiability. We believe that these results, suitably extended
and adapted to query evaluation, can yield to bounded-treewidth automaton
compilation methods that covers the query classes that we mentioned.

Expressive Automata Targets. The efficient compilation of queries to au-
tomata is made easier by allowing more expressive automaton classes as the
target language. In [2], we used bottom-up tree automata, which process the tree
decomposition of the instance from the leaves to the root. Our idea is to move
to more expressive representations, namely, two-way alternating automata [12].
These automata can navigate through the tree in every direction (including
already visited parts), and thus can be more concise. The notion of alternation
allows automata to change states based on complex Boolean formulae on the
neighboring states, which also helps for concision. Indeed, the expressive lan-
guages of [7] are compiled to two-way alternating parity automata, which further
use a parity acceptance condition on infinite runs, to evaluate fixpoints.

To make automaton compilation more efficient, another idea is to compile
queries to automata with a concise implicit representation. In particular, we can
use automata with a structured state space: the states are tuples of Boolean
values, and the transition function can be written concisely for each coordinate
of the tuple as a function of the tuples of child states. It may be possible to
capture the tractability of query evaluation for 2RPQs via automaton methods,
structuring the state space to memorize separately the regular sublanguages of
paths between node pairs.

4 Obtaining Tree Decompositions
Estimating Treewidth. As we have mentioned, computing the treewidth of an
instance directly is an NP-hard problem. Hence, a practical system using the
structural approach must compute tree decompositions more efficiently, even if
this limits us to non-optimal decompositions. We intend to experiment with two
main kinds of methods to obtain tree decompositions efficiently: separator-based
algorithms, which recursively divide the instance based on various heuristics; and
elimination ordering algorithms, where the nodes in the graph are ordered using
some measure and eliminated one by one from the graph [10]. To estimate the
quality of our decompositions, we can also estimate lower bounds on the instance
treewidth: for instance via graph degeneracy or average degree [11].

Query-Specific Decompositions. In some cases, knowledge about the query
can help us to obtain better tree decompositions of the instance. A trivial situation
is when we know that the query is only on a subset of the database relations:

we can then ignore the others when decomposing. More subtly, if we know that
specific joins are not made by the query, then we may be able to rewrite the
instance accordingly, and lower the treewidth. For instance, if no R- and S-atoms
share a variable in the query, then the instance {R(a, b), S(b, c)} can be rewritten
to {R(a, b), S(b′, c)}, which may lower the treewidth by disconnecting elements.
We do not understand this process yet in the general case, but we believe that a
theory of lineage-preserving instance rewritings for a given query (or query class)
can be developed, using the notion of instance unfoldings introduced in [3].

5 Tractable Lineage Targets

Once we have compiled the query to an automaton and decomposed the instance to
a tree encoding, our goal is to compute a lineage representation of the automaton
on the encoding, namely, a representation of the subinstances where the query
holds, which we will build as a Boolean circuit. We can then use this to perform
PQE, by computing the probability of the query as that of the lineage. In so
doing, we need to rely on the fact that the lineage is in a class of circuits for
which probability can be efficiently computed.

To this end, a first step towards a practical system is to adapt the methods
of [2] to the expressive automaton classes that are needed for efficient query
compilation. We believe that this is possible, but with a twist: because two-way
automata can navigate a tree in every direction, they may go back from where
they came, thus resulting in cyclic runs. Therefore, it seems that the natural
lineages that we would obtain for alternating two-way automata are cyclic Boolean
circuits, which we call Boolean cycluits. A semantics for such circuits would need
to be defined based on the semantics of automaton runs and reachable states:
we believe that the evaluation could follow least fixed-point semantics, and be
performed in linear time.

Second, we would need to perform efficient probability computation on these
cycluits. One first way to address this would be to eliminate cycles and transform
them to tractable classes of Boolean circuits (e.g., d-DNNFs), which we believe
can be done assuming bounds on the treewidth of the cycluits. Alternatively, we
can apply message passing methods directly on the cycluits [19]; or we can try to
rewrite the automaton to produce acyclic circuits or even d-DNNFs directly. All
these methods would be generally intractable in the query, which is unsurprising:
indeed, PQE is often intractable even for languages with tractable combined com-
plexity, and efficient compilation to automata. It would be interesting, however,
to identify islands of tractability; and, in intractable cases, to benchmark the
previously mentioned approaches and see which ones perform best in practice.

Another important direction for a practical system is to be able to evaluate
queries on instances where facts are not independent, i.e., go beyond the TID
formalism. For instance, facts could be present or absent according to a complex
lineage, like the cc-instances of [1]. In this context, new methods can be efficient.
For instance, if the number of probabilistic events is small, performing Shannon
expansions on some well-chosen events may make large parts of the instance
deterministic, making the query easier to evaluate on these parts.

6 Practical Matters
We now review possible approaches and directions to implement and evaluate
the structural approach for PQE on real-world datasets.

Results on Treelike Instances. In [21], the structural approach has been
compared with one of the existing probabilistic data management systems, namely
MayBMS [18]. The instances considered have been randomly generated to have
low treewidth (6 7). The results show that an implementation of the structural
approach can perform query evaluation faster than the exact methods of MayBMS,
in cases where there are many matches and many correlations between them.
Indeed, MayBMS does not take advantage of the fact that the instances are
treelike. However, in this work, the queries were compiled to automata by hand
rather than automatically, and there was no study of practical datasets.

Practical Datasets and Partial Decompositions. A first question is to
extend this study to practical datasets, and to investigate whether such datasets
have low treewidth, or whether we can use approximate decompositions or
reasonably low treewidth. Our preliminary results suggest that some datasets
have high treewidth, but others, in particular transportation networks, have
treewidth much smaller than their size. For instance, the OpenStreetMaps graph
of Paris has over 4 million nodes and 5 million edges, but we estimated its
treewidth to be 6 521. We do not know yet of a theoretical reason explaining
why transportation networks generally exhibit this property.

However, this bound is still too large to be practical. One way to work
around this problem is thus to compute a partial decomposition [22] of the
instance, i.e., a tree decomposition of a part of the instance whose width is at
most k, with k fixed. This results in a structure formed of a forest of instances
with treewidth 6 k, called the tentacles, that interface with a core, i.e., the
remaining facts, whose treewidth is too high and that cannot be decomposed.
Our preliminary experiments have shown that, for some transportation networks,
a partial decomposition for k = 10 results in a core instance whose size is about
10% of the original instance.

This decrease in the size of the core, in turn, can potentially have an immediate
effect in the processing of queries. Preliminary results [20] have shown that using
partial decompositions of fixed treewidth for probabilistic reachability queries, in
conjunction with sampling in the core graph, can make query processing up to 5
times faster.

Tentacle Summarization. An important problem when computing probabili-
ties on partial decompositions is the interface between the tentacles and the core,
i.e., we must find a way to summarize the tentacles in the core when applying
sampling to the core. As the tentacles are treelike, we can efficiently compute
probabilities and lineages in them: the goal of summarization is to eliminate
the tentacles and replace them by summary facts that are added to the core. In
the case of simple queries, such as reachability queries, the summary facts can
have the same semantics as in the original instance, but this does not seem to

generalize to arbitrary queries: it may even be the case that some queries cannot
be rewritten to the summary facts while remaining in the same language.

Having summarized the tentacles, we may also answer queries approximately
via sampling, using the (exact) tentacle summaries added to the core: as the
instance is now smaller, this process can be performed faster.

References
1. A. Amarilli. Leveraging the Structure of Uncertain Data. PhD thesis, Télécom

ParisTech, 2016. 2016-ENST-0021.
2. A. Amarilli, P. Bourhis, and P. Senellart. Provenance circuits for trees and treelike

instances. In Proc. ICALP, volume 9135, 2015.
3. A. Amarilli, P. Bourhis, and P. Senellart. Tractable lineages on treelike instances:

Limits and extensions. In Proc. PODS, 2016. To appear.
4. H. Andréka, I. Németi, and J. van Benthem. Modal languages and bounded

fragments of predicate logic. J. Philosophical Logic, 27(3), 1998.
5. S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings

in a k-tree. SIAM Journal on Algebraic and Discrete Methods, 8(2), 1987.
6. P. Barceló Baeza. Querying graph databases. In Proc. PODS, 2013.
7. M. Benedikt, P. Bourhis, and M. Vanden Boom. A step up in expressiveness of

decidable fixpoint logics. In Proc. LICS, 2016. To appear.
8. M. Benedikt, B. Ten Cate, T. Colcombet, and M. V. Boom. The complexity of

boundedness for guarded logics. In Proc. LICS, 2015.
9. D. Berwanger and E. Grädel. Games and model checking for guarded logics. In

Proc. LPAR, 2001.
10. H. L. Bodlaender and A. M. C. A. Koster. Treewidth computations I. Upper bounds.

Information and Computation, 208(3), 2010.
11. H. L. Bodlaender and A. M. C. A. Koster. Treewidth computations II. Lower

bounds. Information and Computation, 209(7), 2011.
12. H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,

and M. Tommasi. Tree automata: Techniques and applications, 2007.
13. B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of

finite graphs. Inf. Comput., 85(1), 1990.
14. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases.

VLDBJ, 16(4), 2007.
15. A. Darwiche. On the tractable counting of theory models and its application to

truth maintenance and belief revision. J. Applied Non-Class. Log., 11(1-2), 2001.
16. G. Gottlob, R. Pichler, and F. Wei. Monadic Datalog over finite structures of

bounded treewidth. TOCL, 12(1), 2010.
17. E. Grädel and M. Otto. On logics with two variables. TCS, 224(1), 1999.
18. J. Huang, L. Antova, C. Koch, and D. Olteanu. MayBMS: a probabilistic database

management system. In Proc. SIGMOD, 2009.
19. S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on

graphical structures and their application to expert systems. JRSS Ser. B, 1988.
20. S. Maniu, R. Cheng, and P. Senellart. ProbTree: A query-efficient representation of

probabilistic graphs. In Proc. BUDA, 2014.
21. M. Monet. Probabilistic evaluation of expressive queries on bounded-treewidth

instances. In Proc. PhD Symposium of SIGMOD/PODS. ACM, 2016. To appear.
22. F. Wei. TEDI: Efficient shortest path query answering on graphs. In Proc. SIGMOD,

2010.
23. M. Yannakakis. Algorithms for acyclic database schemes. In Proc. VLDB, 1981.

