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ABSTRACT
The online influence maximization (OIM) problem aims to learn

sequentially an optimal policy for selecting seed nodes which maxi-

mize the cumulative spread of information (influence) in a diffusion

medium, throughout a multi-round diffusion campaign. We con-

sider the sub-class of OIM problems where (i) the reward of a given

round of the ongoing campaign consists of only the new activations
(not observed at previous rounds), and (ii) the round’s context and

the historical data from previous rounds can be exploited to learn

the best policy. This problem is directly motivated by the real-world

scenarios of information diffusion in influencer marketing, where
(i) only a target user’s first / unique activation is of interest (and

this activation will persist as an acquired, latent one throughout

the campaign), and (ii) valuable side-information is available to

the learning agent. We call this OIM formulation Episodic Contex-
tual Influence Maximization with Persistence (in short, ECIMP). We

propose the algorithm LSVI-GT-UCB, which implements the opti-
mism in the face of uncertainty principle for episodic reinforcement

learning with linear approximation. The learning agent estimates

for each seed node its remaining potential with a Good-Turing

estimator, modified by an estimated Q-function. The algorithm is

empirically proven to perform better than state-of-the-art methods

on two real-world datasets and a synthetically generated one.
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• Computing methodologies→ Q-learning; Online learning set-
tings.
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1 INTRODUCTION
Information diffusion by stochastic epidemic models has been

widely studied in recent research, for diverse domains of appli-

cation, from social networks [19] to electricity grids [28] to IoT and

communication networks [16].

When information diffusion occurs in online media (e.g., social

networks), the generic problem of Influence (i.e., spread) Maximiza-
tion (IM) has been introduced by [19], and is one of the most studied

problems in the literature, due to its applicability to viral marketing

[8], ad placement [30], or personalized recommendation [14, 29].

From a simple and generic perspective, given a diffusion net-

work represented as a directed, weighted (probabilistic) graph

𝐺 = (𝑉 , 𝐸, 𝑝), the IM problem to solve is that of finding 𝐿 seed

nodes (influencers), from which to initiate an information diffusion

process, with the objective of maximizing the number of influenced

(activated) nodes, i.e. the reward. The seminal work of Kempe et

al. [19] proposed two models for the information diffusion process,

the Independent Cascade (IC) model and the Linear Threshold (LT)

one. Under the former model, the process develops in discrete steps,

starting with the selection of 𝐿 seed nodes, where at each step

the newly activated nodes attempt to influence and activate their

neighbors, succeeding with a probability 𝑝𝑖 𝑗 ,∀(𝑖, 𝑗) ∈ 𝐸. In the LT

model, at any step in the diffusion process, a node becomes active

if the sum of the weights of its active incoming neighbors is above

that node’s own activation threshold. Under both diffusion models,

the IM problem has been shown to be NP-hard, reducing to the

Set-Cover problem and the Vertex-Cover problem respectively [18].

Many instances of the IM problem have been considered in

recent years, for diverse problem settings, application scenarios,

or performance objectives. E.g., the diffusion network may be a

bipartite graph, modeling any-path diffusion from influencers to

target nodes [2], diffusions may be topic-aware [3, 7], the seeds may

be selected by an online approach [23] instead of the classical select-

then-spread offline one, or the diffusion process may be repeated

over multiple rounds (a diffusion campaign), with the objective

being the cumulative reward [21].

In particular, online influence maximization (OIM) over multiple

rounds [15, 21, 33] allows to deal with problem settings having

(partially) unknown diffusion specifications (i.e., network and /

or diffusion model). Therein, starting from a known base of few

influential nodes, one can discover and learn the diffusion environ-

ment while maximizing spread, over multiple rounds of a learn &

spread campaign. Consequently, the IM objective shifts from a per-

diffusion (round) one to a per-campaign one, e.g., by maximizing

the total number of activations or, alternatively, the total number

of distinct activations.
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We study an online IM problem setting that connects many of the

recently considered IM assumptions for practical purposes, namely

(i) an unknown diffusion medium and an influencer-target node

bipartite graph abstraction thereof, (ii) diffusionmodel-independent

spread over multiple rounds of an influence campaign, (iii) topic

/ context dependent diffusions, and finally (iv) a spread objective

given by the campaign’s total number of distinct activations.
Our problem setting is directly motivated by (but not limited

to) the real-world scenarios of information diffusion in influencer
marketing, where (i) the diffusion medium is highly uncertain and

only a few influencer nodes may be known in advance, (ii) only

a target user’s first activation is of interest and, once acquired, it

will persist; e.g., as in political endorsements or subscriptions to a

media service, and (iii) valuable side-information may be available

to the learning agent.

Recent research has considered topic-aware online IM in uncer-

tain environments, by sequential learning approaches of Contextual

Multi-Armed Bandits (MABs) [1, 9, 15, 22]. Contextual MABs are

rather versatile approaches, providing both formal guarantees and

effective approximation algorithms. However, most often their per-

formance is only theoretically established. Moreover, they fail to

capture many realistic scenarios, where actions are influenced by

other factors than the context and the previously sampled i.i.d re-

ward random variables. In particular, for information diffusion with

persistent activations – i.e., where only the new activations are

rewarded – repeatedly selecting the same seemingly optimal seed

node(s) may lead to non-optimal policies for seed selection. Instead,

this important aspect may be captured by reinforcement learning
states, thus preserving the i.i.d requirement for the rewards.

To enable decision-making based on the seed’s number of se-

lections, we propose instead a sequential learning method based

on episodic reinforcement learning (RL), called Episodic Contextual
Influence Maximization with Persistence (in short, ECIMP).

In our approach, not only each influencer’s number of selections

can inform the decision making process, but also the historical

data from previous campaigns can be exploited for the learnt policy.

Therefore, the focus moves from one of sequentially learning during

a single campaign with multiple rounds to one of learning from

multiple campaigns with multiple rounds. In the RL terminology,

a diffusion episode will be the equivalent of a diffusion campaign,

and its horizon will be the equivalent of the number of rounds.

Due to the contextual information provided by the environment

at the beginning of each round, the state space may be extremely

large. For such cases, the recent works of [17, 31, 32] have success-

fully used (generalized) linear function approximations to estimate

the value function or the policy, a direction we also adopt here.

An optimal policy would be the one finding at each round the

seed nodes with the most yet-to-be-activated target nodes in that

round’s context. This untapped resource is seen a seed’s remaining
potential, and it has been previously successfully computed with

Good-Turing estimators [15, 21]. If we assign to each potential seed

node its own episodic MDP, then the value function in each state

represents the respective seed’s remaining potential. Assuming that

an activation’s novelty is relative to one campaign, and knowing

that the Good-Turing estimator is just an average of new activations,

we use the historical data from previous campaigns for computing

the average GT estimator for the round over the episodes.

Contribution. The main contributions of this paper are as follows:

• We formally describe the ECIMP problem, jointly drawing

motivation from several up-to-now disjoint and practically

relevant recent studies in the area of online Influence Max-

imization, for learning seed selection policies in unknown

diffusion environments.

• We propose the novel algorithm LSVI-GT-UCB, which imple-

ments the optimism in the face of uncertainty principle for

episodic reinforcement learning with linear approximation.

• As a key aspect of LSVI-GT-UCB, we describe how the learn-

ing agent can estimate for each seed node its remaining

potential with a Good-Turing estimator, modified by an esti-

mated Q-function.

• We evaluate empirically the performance of LSVI-GT-UCB
on two real-world datasets and a synthetically generated

one, comparing with state-of-the-art methods.

2 MAIN RELATEDWORK
The work of [25] studies the OIM problem in social networks un-

der the assumptions of the LT model and node-level feedback.

The proposed algorithmic solution is called LT-LinUCB. It exploit
the linearity of node activations in the LT model, obtaining an

𝑂 (poly(𝑚)
√
𝑇 log𝑇 ) regret, where𝑚 is the number of edges and𝑇

is the number of rounds. They propose also the model-free OIM-ETC

algorithm, with an𝑂 (poly(𝑚)𝑇
2

3 ) regret bound. In [35], the authors
propose an �̃� (

√
𝑇 ) algorithm, called IC-UCB, for the OIM problem,

assuming the IC model and node-level feedback. IC-UCB uses a stan-
dard offline IM oracle to find the best seed set, and estimates the

IC model’s edge parameters 𝑝 by transforming them into another

parameter; this leads to an instance of the generalized linear model

problem [11], which is solved with MLE. The recent work of [15]

focuses on the OIM problem formulation where the reward consists

of only the new activations. Their contextual MABs solution, called

GLM-GT-UCB, estimates the number of remaining inactivated target

nodes for each seed node with a Good-Turing estimator, which is

modified by a function of the side-information (context) provided by

the environment. Their Good-Turing estimator has guarantees for

its confidence bound, and it is experimentally shown to be effective.

In [20], the authors designed a generic framework for learn-

ing graph heuristics and finding approximate solutions for NP-

hard combinatorial optimization problems. The framework is a

greedy meta-algorithm, Q-learning for the Greedy Algorithm,
learned over multiple episodes of RL over different problem in-

stances sampled from a given graph distribution. For each problem

type, one must provide specific helper / cost functions, as well as ter-

mination criteria for the meta-learning algorithm to solve the prob-

lem. E.g., for the Set-Cover problem, the helper function would be

the identity one, as there is no need for a combinatorial structure on

the partial solution, the cost function would the size of the partial so-

lution, and the termination criteria would be either when all nodes

are covered or the budget is spent. At each step within the episode’s

horizon, Q-learning for the Greedy Algorithm chooses a seed
node either randomly with probability 𝜖 , or the one which maxi-

mizes the estimated Q-function �̂� (ℎ(𝑆𝑡 ), 𝑣 ;Θ),∀𝑣 ∈ 𝑉 ,𝐺 = (𝑉 , 𝐸).
For each node 𝑣 ∈ 𝑉 in the graph, the algorithm uses structure2vec
(S2V) [10] to encode its neighborhood, given the current partial
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solution 𝑆𝑡 . This framework is quite versatile and applicable on

a wide-range of combinatorial optimization problems on graphs.

However, it requires knowledge about the graph’s topology, as the

embedding of the potential new seed node and the pooled embed-

ding over the entire graph are combined to provide the estimated

Q-function. The approximator’s parameters are updated in batches,

which allows delayed rewards. The algorithm is experimentally

proven to be successful for various types of NP-hard problems,

graph types, and graph sizes. Recently, [24] has adapted this ap-

proach, in the PIANO framework for influence maximization.

The work of [17] considers RL with a very large number of states,

by incorporating function approximation in the learning process.

The proposed algorithm, called LSVI-UCB, models the problem as

an episodic Markov Decision Process (MDP), with the assumptions

that the transition dynamics and the reward function are linear. It is

proven that the action-value function is consequently linear as well,

and the algorithm is designed to approximate well this quantity.

Inspired by the linear bandits literature, the algorithm implements

the "optimism in the face of uncertainty" principle – it encourages

exploration by adding an UCB bonus. It achieves �̃� (
√
𝑑3𝐻3𝑇 ) regret,

where 𝑑 is the ambient dimension of the feature space, 𝐻 denotes

the horizon (i.e., length of each episode), and 𝑇 is the total number

of steps. LSVI-UCB runs in polynomial time (𝑂 (𝑑2𝐴𝐾𝑇 )), where 𝐴
is the size of the action space and 𝐾 is the number of episodes. The

algorithm benefits from the sample complexity guarantees, in the

sense that with constant probability it can learn an 𝜖−optimal policy

𝜋 which satisfies𝑉 ∗ (𝑥1) −𝑉 𝜋 (𝑥1) ≤ 𝜖 , using �̃� (𝑑3𝐻4/𝜖2) samples,

when the initial state 𝑥1 is fixed for all episodes. The algorithm is

shown to be robust to small model variations, under the condition

of using a different hyper-parameter 𝛽 from the UCB in different

episodes. The main drawback of [17] is that their solution remains

limited to “almost” linear MDPs.

Under weaker assumptions than [17], [32] proposes an efficient

least-squares dynamic programming algorithm for episodic RL,

also called LSVI-UCB, which approximates the Q-function with a

Generalized Linear Model. The approximator overestimates the

optimal Q-function, implementing the “optimism in face of uncer-

tainty” principle. The statistical efficiency is theoretically proven

with a regret bound of �̃� (
√
𝑑3𝑇 ), where 𝑑 is the feature dimension,

and 𝑇 is the number of episodes. For these results, an optimistic

closure with respect to the Bellman operator assumption is made.

The assumption is shown to be weaker than the one of linearity,

by providing an MDP which meets the former but not the latter.

Optimistic closure also implies realizability, which is typical for

contextual multi-armed bandits, where the horizon is 𝐻 = 1.

3 PROBLEM FORMULATION
The IM problem addressed in this paper is aimed at information

diffusion scenarios – e.g., in a social network, but generally in any

medium that may exhibit stochastic / epidemic diffusion – where

multiple attempts of spreading the information are made, and the

new activations make up the reward. The diffusion network can be

naturally represented as a graph 𝐺 = (𝑉 , 𝐸) where 𝑉 are the nodes

(users, profiles) and 𝐸 are the edges (relationships). In our setting,

this topology is assumed to be unknown.

Table 1: Summary of notations.

𝑇 total number of campaigns / episodes

𝐻 total number of rounds in a campaign

𝐾 total number of available influencers

𝑑 the ambient dimension of the feature space

𝑌𝑡,ℎ the 𝑑-dimensional context at round ℎ of episode 𝑡

𝐼𝑡,ℎ the set of 𝐿 influencers selected at round ℎ of episode 𝑡

𝐴𝑘 set of basic nodes reachable by influencer 𝑘

𝑆 (𝐼𝑡,ℎ, 𝑌𝑡,ℎ) the spread given by the environment at round ℎ of episode 𝑡

𝑝𝑘,𝑗 (𝑡, ℎ) the probability of influencer 𝑘 activating the basic node 𝑗

at round ℎ of episode 𝑡

𝜃𝑘,𝑗 feature vector that explains the probability of influencer 𝑘

to activate basic node 𝑗 in the round’s context 𝑌𝑡
𝑛𝑘,𝑡,ℎ the history of number of selections of influencer 𝑘

at round ℎ of episode 𝑡

𝑝 ( 𝑗) the intrinsic probability of activating itself of a basic node 𝑗

𝑟𝑘,𝑡,ℎ the reward for influencer 𝑘 at the end of round ℎ in episode 𝑡

𝑅𝑘,𝑡,ℎ the influencer 𝑘’s remaining potential (i.e. the feasible reward)

at round ℎ of episode 𝑡

𝑅𝑘,𝑡,ℎ Good-Turing estimator of the remaining potential

for influencer 𝑘 at round ℎ of episode 𝑡

�̂�𝐺𝑇
𝑘,𝑡,ℎ

Q-function estimated with a Good-Turing estimator

for influencer 𝑘 at round ℎ of episode 𝑡

�̂�𝐿𝑆𝑉 𝐼
𝑘,𝑡,ℎ

(·, ·) Q-function estimated with Least-Squares Value Iteration

for influencer 𝑘 at round ℎ of episode 𝑡

Instead, a set of𝐾 potential influencers (among the nodes in𝑉 ) is

assumed to be known, and the influence process can only start from

them, with the effect of activating certain nodes among those from

an unknown overall set of basic (influenced) nodes. While we make

no assumptions on the diffusion model that leads to activations, we

assume to get semi-bandit feedback after each round that spreads a

given “message”, as the set influenced nodes (a set of node Ids).
Over a campaign, consisting of a number of𝐻 rounds, the reward

is defined as the number of new activations.
The message that is to be spread at each round ℎ ∈ [𝐻 ] is

encoded as a vector 𝑌ℎ ∈ R𝑑 and the probability that each target

(or basic) node 𝑗 adopts it – or gets influenced / activated by it –

depends linearly on 𝑗 ’s hidden profile relative to the influencer 𝑘

seeded at that round, denoted 𝜃𝑘,𝑗 , and the message (plus some

noise). So the response of a target node 𝑗 is given by ⟨𝜃𝑘,𝑗 , 𝑌ℎ⟩ + 𝜖 .
This response of node 𝑗 , along with the number of times the

influencer 𝑘 was seeded to send a message in the campaign, denoted

𝑛𝑘 , are used in a generalized linear function 𝛼 , called the external
factor. The role of the external factor 𝛼 is to modulate the default

(inherent) propensity of node 𝑗 to activations, denoted as 𝑝 ( 𝑗).
The following single-campaign problem, formulated in [15], can

be used as an intermediary step to introduce the more general

ECIMP setting we study in this paper:

Problem 1 (Contextual InfluenceMaximization [15]). Given
a set of influencers [𝐾] = 1, . . . , 𝐾 , a budget of 𝐻 rounds (or trials),
and a number 1 ≤ 𝐿 ≤ 𝐾 of influencers to be activated at each round,
the objective is to solve the following optimization problem:

argmax

𝐼ℎ⊆[𝐾 ], |𝐼ℎ |=𝐿,∀1≤ℎ≤𝐻
E|

⋃
1≤ℎ≤𝐻

𝑆 (𝐼ℎ, 𝑌ℎ) |, (1)

where 𝑆 (𝐼ℎ, 𝑌ℎ) is the spread of the chosen set of influencers for round
ℎ, and the probability that influencer 𝑘 activates basic node 𝑗 depends
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on the round’s context 𝑌ℎ and the number of 𝑘’s selections 𝑛𝑘 (ℎ):
𝑝𝑘,𝑗 (ℎ) = 𝛼 (⟨𝜃𝑘,𝑗 , 𝑌ℎ⟩, 𝑛𝑘 (ℎ))𝑝 ( 𝑗) . (2)

The solution to Problem 1 relies on upper-confidence bound ap-

proaches (UCB), which need to estimate at each step the remaining
potential of influencers. In the bandit literature, an estimator that

has been used successfully for such problems is the Good-Turing

(GT) estimator [6], where the remaining potential can be estimated

via the hapaxes, a notion from linguistics that describes here the

nodes that have been activated only once. Applying this estimator,

coupled with a theoretically derived upper-confidence bound, has

been shown to work well in practice when the distribution on the

number of newly activated nodes follows a Poisson distribution

(Algorithm GLM-GT-UCB of [15]).

We describe next how the Problem 1 can be extended to the

episodic case of multiple campaigns, each having multiple rounds,

with the objective of learning between campaigns.

3.1 Reinforcement learning setting
In the episodic, i.e., multi-campaign setting, the problem becomes:

Problem 2 (Episodic Contextual Influence Maximization

with Persistence (ECIMP)). Given a set of influencers [𝐾] =

1, . . . , 𝐾 , a budget of 𝑇 campaigns, each consisting of of 𝐻 rounds,
and a number 1 ≤ 𝐿 ≤ 𝐾 of influencers to be activated at each round,
the objective is to solve the following optimization problem:

argmax

𝐼𝑡,ℎ⊆[𝐾 ], |𝐼𝑡,ℎ |=𝐿,∀1≤ℎ≤𝐻,∀1≤𝑡≤𝑇
E|

⋃
1≤ℎ≤𝐻,1≤𝑡≤𝑇

𝑆 (𝐼𝑡,ℎ, 𝑌𝑡,ℎ) |, (3)

where 𝑆 (𝐼𝑡,ℎ, 𝑌𝑡,ℎ) is the spread of the chosen set of influencers for
round ℎ in campaign 𝑡 , and the probability that an influencer 𝑘
activates some basic node 𝑗 depends on the round’s context 𝑌𝑡,ℎ and
the number of 𝑘’s selections 𝑛𝑘,𝑡,ℎ in campaign 𝑡 :

𝑝𝑘,𝑗 (𝑡, ℎ) = 𝛼 (⟨𝜃𝑘,𝑗 , 𝑌𝑡,ℎ⟩, 𝑛𝑘,𝑡,ℎ)𝑝 ( 𝑗). (4)

(In what follows, we will use the terms campaign and episode

interchangeably. The former is closer to the terminology of the

application scenario, the latter is common from episodic RL.)

The problem can be naturally modeled as 𝐾 episodic Markov

decision processes, one for each influencer 𝑘 ∈ [𝐾], namely

MDP(S𝑘 ,A𝑘 , 𝐻𝑘 , P𝑘 , 𝑟𝑘 ), where S𝑘 is the state space, A𝑘 is the

set of possible actions, 𝐻𝑘 is the horizon within each episode,

P𝑘 = {P𝐻
𝑘,ℎ=1

} is the set of state transition probability measures,

and 𝑟𝑘 = {𝑟𝐻
𝑘,ℎ=1

} is the set of reward functions. The state space

of such an MDP can be very large, possibly infinite. The action

spaces, given that an MDP is maintained for each influencer, is the

binary set for each influencer being selected or not, i.e.,A𝑘 = {0, 1}
and A = {0, 1}𝐾 . The reward is assumed to be uniquely defined

by 𝑟𝑘,ℎ (𝑠𝑘 , 𝑎𝑘 , 𝑠
′

𝑘
),∀𝑠𝑘 , 𝑠

′

𝑘
∈ S𝑘 , 𝑎𝑘 ∈ A𝑘 , which can further be

bounded and simplified to 𝑟𝑘,ℎ (𝑠𝑘 , 𝑎𝑘 ). Recall the reward is the

count of new activations, which is naturally bounded by the total

number of users.

As in the RL literature in general, at the beginning of each

episode, the initial states 𝑠𝑘,1,∀𝑘 ∈ [𝐾] are given and thereon

the learning agent interacts with the episodic MDPs. It observes

the states 𝑠𝑘,ℎ ∈ S𝑘 at each step ℎ ∈ [𝐻 ] and proceeds to take

an overall action 𝑎ℎ ∈ A. The MDPs of the selected influencers

are transitioning according to their transition dynamics P𝑘 to the

new states 𝑠𝑘,ℎ+1. When an influencer is not selected, i.e., 𝑎𝑘,ℎ = 0,

the state remains the same, P𝑘,ℎ (𝑠 |𝑠, 0) = 1. The state transition

dynamics are stochastic and unknown upon selecting an influencer.

The final state of each MDP is 𝑠𝑘,𝐻+1, where no action can be taken

anymore and the reward is consequently zero. Obviously, in this

setup, the MDPs may not reach their final state before the total

campaign budget 𝐻 is spent.

The goal is to maximize the number of distinct activations at the

end of a campaign, as defined in Problem 2, leveraging information

from previous rounds and previous campaigns. This optimization

problem expressed in terms of episodic MDPs has as solution the

optimal policy 𝜋∗ ∈ argmax𝜋∈Π 𝑉
𝜋 (𝑠), ∀𝑠 ∈ S, where Π is the

policy set, and S =
⋃
𝑘∈[𝐾 ] S𝑘 . The agent aims to learn the optimal

policy 𝜋∗ : S × [𝐻 ] → A.

The policies are evaluated by their corresponding value functions

or their action-value functions. The Bellman equations for these

values are the following:

𝑉 𝜋
𝑘,ℎ

(𝑠𝑘 ) = E
[
𝐻−1∑︁
𝜏=ℎ

𝑟𝑘,𝜏 (𝑠𝑘,𝜏 , 𝜋 (𝑠𝑘,𝜏 , 𝜏)) |𝑠𝑘,ℎ = 𝑠𝑘

]
,

∀𝑠𝑘 ∈ S𝑘 ,∀ℎ ∈ [𝐻 ] .
𝑄𝜋
𝑘,ℎ

(𝑠𝑘 , 𝑎𝑘 ) = 𝑟𝑘,ℎ (𝑠𝑘 , 𝑎𝑘 )+

E

[
𝐻−1∑︁
𝜏=ℎ

𝑟𝑘,𝜏 (𝑠𝑘,𝜏 , 𝜋 (𝑠𝑘,𝜏 , 𝜏)) |𝑠𝑘,ℎ = 𝑠𝑘 , 𝑎𝑘,ℎ = 𝑎𝑘

]
,

∀(𝑠𝑘 , 𝑎𝑘 ) ∈ S𝑘 × A𝑘 ,∀ℎ ∈ [𝐻 ] .
The optimal value function is

𝑉 ∗
ℎ
(𝑠) = max

𝑎𝑘 ∈A𝑘 ,𝑘∈[𝐾 ]
𝑄∗
𝑘,ℎ

(𝑠, 𝑎𝑘 ), ∀𝑠 ∈ S.

So the learning agent chooses its actions according to the greedy

policy with respect to the estimated action-value functions:

𝜋 (ℎ, 𝑠) = argmax

𝑎𝑘 ∈A𝑘 ,𝑘∈[𝐾 ]
𝑄𝜋
𝑘,ℎ

(𝑠, 𝑎𝑘 ) .

The flow of this learning process hence depends on how the 𝑄

function is estimated, as detailed next.

4 RL WITH AVERAGE GT ESTIMATORS AND
LSVI LEARNED MODIFIERS

The Multi-Armed Bandit problem, and many of its well-known

variants such as stochastic bandits, contextual bandits [22], con-

textual bandits with linear rewards [9], with generalized linear

rewards [12], or with Good-Turing reward estimators [21] [15],

restrict the reward random variables to be independent and identi-

cally distributed, i.e. independent of the previous action choices and

rewards. However, the choice of actions may alter the state of the

environment. In more general Reinforcement Learning problems,

theoretical guarantees for the estimators can be obtained without

ignoring the state of the environment.

4.1 The Good-Turing estimator
Good [13] has proposed an estimator – Good-Turing (GT) – for

the missing mass in a sample, i.e., the probability mass function

of the new species from a population to be discovered in the next
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sample – estimated as the proportion of species encountered only

once (a.k.a., hapaxes). The work of [26] studied the convergence

rate for the GT estimator for the missing mass. In [6], the authors

have used the GT estimator for estimating the expert’s probability

of identifying new interesting items from an underlying population.

In a similar vein, [21] used the GT estimator for the potential new

activations to be seen in online influence maximization campaigns.

In this work, the influencer’s diminishing reward is modelled as

a function of the number of selections 𝛾 (𝑛𝑘,𝑡 ), and applied it as a

modifier to the GT estimator (denoted Fat-GT, for Fatigue-aware

Transformation of the Good-Turing estimator):

𝑅𝑘,ℎ =
1

𝑛𝑘,ℎ

∑︁
𝑗∈𝐴𝑘

𝑈
𝛾
𝑛𝑘,ℎ

( 𝑗) (5)

where

𝑈
𝛾
𝑛𝑘,ℎ

( 𝑗) =
∑︁

1≤𝑠≤𝑛𝑘,ℎ
I{𝑋𝑘,1 ( 𝑗) = · · · = 𝑋𝑘,𝑠−1 ( 𝑗) = 𝑋𝑘,𝑠+1 ( 𝑗) =

· · · = 𝑋𝑘,𝑛𝑘,ℎ ( 𝑗) = 0, 𝑋𝑘,𝑠 ( 𝑗) = 1} ×
𝛾 (𝑛𝑘,ℎ + 1)

𝛾 (𝑠) ,

while 𝑛𝑘,ℎ is the number of selections of influencer 𝑘 at round ℎ,

𝐴𝑘 is the set of basic nodes reachable by influencer 𝑘 , 𝛾 (𝑛𝑘,ℎ) is
the fatigue function (e.g.,

1

𝑛𝑘,ℎ
), 𝑋𝑘,𝑠 ( 𝑗) is the i.i.d. random variable

equal to 1 if influencer 𝑘 activates basic node 𝑗 at round 𝑠 .

In short, the influencer 𝑘’s estimated remaining potential 𝑅𝑘,ℎ
at round ℎ is the average number of discounted hapaxes.

In [15] adapted the Good-Turing estimator to new activations,

in a scenario where context information would be available at the

beginning of each round in the campaign. Namely, the modifier to

the GT estimator is replaced by a function of both the influencer’s

number of selections and the round’s context: 𝛾 (⟨ ˆ𝜃𝑘,𝑡 , 𝑌𝑡 ⟩, 𝑛𝑘,𝑡 ).
The influencer’s potential within a given context is assumed to be

well-represented by the scalar product of the round’s context 𝑌𝑡

and an estimated unknown quantity
ˆ𝜃𝑘,𝑡 for that influencer.

4.2 LSVI-GT-UCB
Motivated by the potential gain from using available historical

informationwhen choosing actions, we propose the novel algorithm

LSVI-GT-UCB1.
The state of each influencer’s MDP is composed by concatenating

the context given by the environment at the beginning of each step

in the horizon 𝑌𝑡,ℎ ∈ R𝑑 , and the reward received by the respective

influencer upon its previous selection within the current episode

𝑟𝑘,𝑡,𝑛𝑘,𝑡,ℎ .

At a high level, LSVI-GT-UCB combines the LSVI algorithm of

[17], based on linear regression estimation, to which we add the

Good-Turing estimator approach. For each influencer we have an

MDP (S𝑘 ,A𝑘 , 𝐻, P𝑘 , 𝑟𝑘 ), assumed to be linear via a feature map

𝜙𝑘 : S𝑘 ×A𝑘 → R𝑑 [5, 17, 27]. Since each influencer has their own

MDP, their action set is binary, i.e. A𝑘 = {0, 1}.
The linear regression data is created for each influencer, based

on its historical selections and rewards:

𝑦𝑘,𝜏,ℎ = 𝑟𝑘,𝜏,𝑛𝑘,𝜏,ℎ +𝑉 𝐿𝑆𝑉 𝐼
𝑘,𝑡,ℎ+1 (𝑠𝑘,𝜏,ℎ+1), 𝜏 ∈ [1, 𝑡], (6)

1
https://github.com/AlexandraIacob/lsvi_gt_ucb

where 𝑉 𝐿𝑆𝑉 𝐼
𝑘,𝑡,ℎ+1 (·) = max𝑎∈A𝑘

�̂�𝐿𝑆𝑉 𝐼
𝑘,𝑡,ℎ+1 (·, 𝑎). The data is used in the

linear regression estimator to which an UCB bound is added:

�̂�𝐿𝑆𝑉 𝐼
𝑘,𝑡,ℎ

(·, ·) = ⟨𝜙𝑘 (·, ·), ˆ𝜃𝑘,𝑡,ℎ⟩ + 𝜁
√︃
𝜙𝑘 (·, ·)𝑇 Σ−1𝑘,𝑡,ℎ𝜙𝑘 (·, ·),where

ˆ𝜃𝑘,𝑡,ℎ = Σ−1
𝑘,𝑡,ℎ

𝑡−1∑︁
𝜏=1

𝜙𝑘 (𝑠𝑘,𝜏,ℎ, 𝑎𝑘,𝜏,ℎ)𝑦𝑘,𝜏,ℎ,

Σ𝑘,𝑡,ℎ = 𝜂 · 𝐼𝑑 +
𝑡−1∑︁
𝜏=1

𝜙𝑘 (𝑠𝑘,𝜏,ℎ, 𝑎𝑘,𝜏,ℎ)𝜙𝑘 (𝑠𝑘,𝜏,ℎ, 𝑎𝑘,𝜏,ℎ)𝑇 ,

(7)

where 𝜁 = 𝑐𝑑𝐻

√︃
log( 2𝑑𝑇𝐻

𝛿
) as in [17][Theorem 3.1], with an ab-

solute constant 𝑐 > 0, ensures with probability 1 − 𝛿 a total regret

of 𝑂

(√︃
𝑑3𝐻4𝑇 log

2 ( 2𝑑𝑇𝐻
𝛿

)
)
, and the penalty factor 𝜂 ensures a

unique minimizer for the regularized least-squares estimator.

In parallel, the Good-Turing estimator for the remaining poten-

tial is computed for each step in each influencer’s MDP as well.

The Fat-GT estimator for the remaining potential, previously intro-

duced in Equation (5), is adapted to Problem 2 by maintaining an

independent estimator for each episode, as follows:

𝑅𝑘,𝑡,ℎ =
1

𝑛𝑘,𝑡,ℎ

∑︁
𝑗∈𝐴𝑘

𝑈
𝛾
𝑛𝑘,𝑡,ℎ

( 𝑗), where

𝑈
𝛾
𝑛𝑘,𝑡,ℎ

( 𝑗) =
∑︁

1≤𝑖≤𝑛𝑘,𝑡,ℎ
I{𝑋𝑘,𝑡,1 ( 𝑗) = . . .

· · · = 𝑋𝑘,𝑡,ℎ ( 𝑗) = 0, 𝑋𝑘,𝑡,𝑖 ( 𝑗) = 1}
𝛾 (𝑛𝑘,𝑡,ℎ + 1)

𝛾 (𝑖) ,

(8)

with its respective confidence bound index given by [21][Th. C.2]:

𝛽𝑘,𝑡,ℎ = (1 +
√
2)

√︄
ˆ𝜆𝑘,𝑡,ℎ log 4ℎ

𝑛𝑘,𝑡,ℎ
+ log 4ℎ

3𝑛𝑘,𝑡,ℎ
, where

ˆ𝜆𝑘,𝑡,ℎ =
𝛾 (𝑛𝑘,𝑡,ℎ + 1)

𝑛𝑘,𝑡,ℎ

𝑛𝑘,𝑡,ℎ∑︁
𝑠=1

𝑟𝑘,𝑡,𝑠

𝛾 (𝑠) .
(9)

Furthermore, in order to learn from historical data, an average of

the Fat-GT estimators for the given step over the previous and

current episodes is computed, as follows:

�̂�𝐺𝑇
𝑘,𝑡,ℎ

=
1

𝑡

𝑡∑︁
𝜏=1

𝑅𝑘,𝜏,ℎ, (10)

implementing our interpretation that the state-action value function

(Q-function) in an MDP is the influencer’s remaining potential:

𝑄𝐺𝑇
𝑘,𝑡,ℎ

= 𝑅𝑘,𝑡,ℎ

=
∑︁
𝑗∈𝐴𝑘

I

{
𝑗 ∉

ℎ⋃
𝑖=1

𝑆 (𝐼𝑡,𝑖 , 𝑌𝑡,𝑖 )
}
𝛾 (𝑛𝑘,𝑡,ℎ + 1)𝑝𝑘,𝑗 (𝑡, ℎ).

(11)

We derive the optimism bonus for the 𝑄-function estimator in

the following theorem:

Theorem 4.1. With probability at least 1−𝛿 , for 𝜆𝑘,𝑡,ℎ = 𝛾 (𝑛𝑘,𝑡,ℎ)∑
𝑗∈𝐴𝑘

𝑝 ( 𝑗) and 𝛽𝑘,𝑡,ℎ = (1+
√
2)
√︂
𝜆𝑘,𝑡,ℎ+1 log 4/𝛿

𝑛𝑘,𝑡,ℎ
+ 1

3𝑛𝑘,𝑡,ℎ
log

4

𝛿
, the
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following holds:

−1
𝑡

𝑡∑︁
𝜏=1

(
𝛽𝑘,𝜏,ℎ +

(𝑛𝑘,𝜏,ℎ + 1)𝜆𝑘,𝜏,ℎ
𝑛𝑘,𝜏,ℎ

)
≤ 𝑄𝐺𝑇

𝑘,𝑡,ℎ
− �̂�𝐺𝑇

𝑘,𝑡,ℎ

≤ 𝜆𝑘,𝑡,ℎ + 1

𝑡

𝑡∑︁
𝜏=1

𝛽𝑘,𝜏,ℎ .

Proof. Estimating the Q-function with the averaged Fat-GT

estimators as in Eq. (10), the estimator’s confidence interval is:

𝑄𝐺𝑇
𝑘,𝑡,ℎ

− �̂�𝐺𝑇
𝑘,𝑡,ℎ

= 𝑅𝑘,𝑡,ℎ − 1

𝑡

𝑡∑︁
𝜏=1

𝑅𝑘,𝜏,ℎ .

We know from [21][Theorem C.2 ] that:

−𝛽𝑘,𝜏,ℎ −
𝜆𝑘,𝜏,ℎ

𝑛𝑘,𝜏,ℎ
≤ 𝑅𝑘,𝜏,ℎ − 𝑅𝑘,𝜏,ℎ ≤ 𝛽𝑘,𝜏,ℎ,∀𝜏 ∈ [1, 𝑡] .

Aggregating the confidence bounds from all episodes, we obtain:

−1
𝑡

𝑡∑︁
𝜏=1

(
𝛽𝑘,𝜏,ℎ +

𝜆𝑘,𝜏,ℎ

𝑛𝑘,𝜏,ℎ

)
≤ 1

𝑡

𝑡∑︁
𝜏=1

(
𝑅𝑘,𝜏,ℎ − 𝑅𝑘,𝜏,ℎ

)
≤ 1

𝑡

𝑡∑︁
𝜏=1

𝛽𝑘,𝜏,ℎ

⇔ −1
𝑡

𝑡∑︁
𝜏=1

(
𝛽𝑘,𝜏,ℎ +

𝜆𝑘,𝜏,ℎ

𝑛𝑘,𝜏,ℎ

)
+ 𝑅𝑘,𝑡,ℎ − 1

𝑡

𝑡∑︁
𝜏=1

𝑅𝑘,𝜏,ℎ

≤ 𝑅𝑘,𝑡,ℎ − 1

𝑡

𝑡∑︁
𝜏=1

𝑅𝑘,𝜏,ℎ ≤ 𝑅𝑘,𝑡,ℎ − 1

𝑡

𝑡∑︁
𝜏=1

𝑅𝑘,𝜏,ℎ + 1

𝑡

𝑡∑︁
𝜏=1

𝛽𝑘,𝜏,ℎ .

Having the remaining potential of influencer 𝑘 at roundℎ of episode

𝑡 defined as in Equation (11), we can obtain that:

0 ≤ 𝑅𝑘,𝑡,ℎ ≤ 𝜆𝑘,𝑡,ℎ

⇔ −1
𝑡

𝑡∑︁
𝜏=1

𝜆𝑘,𝜏,ℎ ≤ 𝑅𝑘,𝑡,ℎ − 1

𝑡

𝑡∑︁
𝜏=1

𝑅𝑘,𝜏,ℎ ≤ 𝜆𝑘,𝑡,ℎ .

Therefore,

−1
𝑡

𝑡∑︁
𝜏=1

(
𝛽𝑘,𝜏,ℎ +

(𝑛𝑘,𝜏,ℎ + 1)𝜆𝑘,𝜏,ℎ
𝑛𝑘,𝜏,ℎ

)
≤ 𝑄𝐺𝑇

𝑘,𝑡,ℎ
− �̂�𝐺𝑇

𝑘,𝑡,ℎ

≤ 𝜆𝑘,𝑡,ℎ + 1

𝑡

𝑡∑︁
𝜏=1

𝛽𝑘,𝜏,ℎ .

which concludes our proof. □

The Q-function is finally estimated by optimistically choosing

from the linear regression-based𝑄 estimator and the GT estimators

for each potential influencer:

�̂�𝑘,𝑡,ℎ (·, ·) = max

{
�̂�𝐿𝑆𝑉 𝐼
𝑘,𝑡,ℎ

(·, ·), �̂�𝐺𝑇
𝑘,𝑡,ℎ

+ 𝜆𝑘,𝑡,ℎ + 1

𝑡

𝑡∑︁
𝜏=1

𝛽𝑘,𝜏,ℎ

}
.

(12)

The 𝐿 influencers having the highest value of �̂�𝑘,𝑡,ℎ (·, ·) are then
chosen. This is outlined in Algorithm 1, as described next.

We assume that the environment provides a context at the be-

ginning of each step, and each MDP’s state is computed by con-

catenating (i) the influencer’s number of selections, and (ii) the

reward resulting from playing that influencer at its last selection.

LSVI-GT-UCB starts the first episode by playing each influencer

once in order to gather initial information. Then, for the follow-

ing steps, it proceeds by computing for each influencer 𝑘 the two

𝑄-function estimators: �̂�𝐿𝑆𝑉 𝐼
𝑘,𝑡,ℎ

and �̂�𝐺𝑇
𝑘,𝑡,ℎ

. The former is computed

using regularized least squares, as in [17]. The latter is computed

with the formula from Equation (10), with its optimism bonus given

by Theorem 4.1. Finally, the learning agent chooses to play the 𝐿

influencers with the highest estimated Q-functions, observes the

reward, and updates the statistics.

LSVI-GT-UCB learns in parallel the linear and the GT estimators

from feedback collected by either of them, and chooses its action

with optimism not only from the estimator’s UCB, but also from

the highest estimated remaining potential with either method.

Algorithm 1 LSVI-GT-UCB

1: Input:Number of influencers 𝐿 per round, penalty factor𝜂, the ambient

dimension 𝑑 of the feature space, feature maps 𝜙𝑘 .

2: Initialize �̂�𝑘,1,ℎ (𝑠𝑘,𝑡,ℎ, 𝑎𝑘,𝑡,ℎ ) = 0, ∀(𝑠𝑘,𝑡,ℎ, 𝑎𝑘,𝑡,ℎ ) ∈ S𝑘 × A𝑘 .

3: for episodes 𝑡 = 1, . . . ,𝑇 do
4: if first episode 𝑡 = 1 then
5: for step 𝑘 = 1, . . . , 𝐾 do
6: Receive the arbitrary context 𝑌𝑡,ℎ ,and create the state

7: 𝑠𝑘,𝑡,ℎ = [𝑌𝑡,ℎ |0 |0].
8: Play influencer 𝑘 .

9: Observe rewards 𝑟𝑡,ℎ , and next state 𝑠𝑘,𝑡,ℎ+1.
10: Update 𝑛𝑘,𝑡,ℎ = 1, Σ𝑘,𝑡,ℎ = 𝜂 · 𝐼𝑑 +

𝜙𝑘 (𝑠𝑘,𝑡,ℎ, 1)𝜙𝑘 (𝑠𝑘,𝑡,ℎ, 1)𝑇 .
11: end for
12: else
13: for step ℎ = 𝐻, . . . , 1 (or until 𝐾 , for the first episode) do
14: Receive the arbitrary context 𝑌𝑡,ℎ .

15: for influencer 𝑘 = 1, . . . , 𝐾 do
16: Create the state 𝑠𝑘,𝑡,ℎ = [𝑌𝑡,ℎ |𝑛𝑘,𝑡,ℎ |𝑟𝑘,𝑡,𝑛𝑘,𝑡,ℎ ], and set

17:
ˆ𝜃𝑘,𝑡,𝐻+1 = 0,

18: �̂�𝐿𝑆𝑉 𝐼
𝑘,𝑡,𝐻+1 (𝑠𝑘,𝑡,ℎ, 𝑎𝑘,𝑡,ℎ ) = ⟨𝜙𝑘 (𝑠𝑘,𝑡,ℎ, 𝑎𝑘,𝑡,ℎ ), ˆ𝜃𝑘,𝑡,𝐻+1 ⟩ =

0.

19: Compute the linear regression data 𝑦𝑘,𝜏,ℎ, ∀𝜏 ∈ [1, 𝑡 ]
20: (as in Equation (6)).

21: Calculate the regularized least-squares estimator (as in

Equation (7)).

22: end for
23: end for
24: for step ℎ = 1, . . . , 𝐻 do
25: for influencer 𝑘 = 1, . . . , 𝐾 do
26: Compute Fat-GT estimator �̂�𝐺𝑇

𝑘,𝑡,ℎ
as in Equation (10).

27: Compute the influencer 𝑘’s Q-function estimator

28: (as in Equation (12)).

29: end for
30: Play action 𝑎𝑡,ℎ made of the 𝐿 influencers with the highest

31: estimated Q-functions �̂�𝑘,𝑡,ℎ .

32: Update 𝑛𝑘,𝑡,ℎ = 𝑛𝑘,𝑡,ℎ−1 + 1, ∀𝑎𝑡,ℎ [𝑘 ] = 1.

33: Observe reward 𝑟𝑡,ℎ , and next states 𝑠𝑘,𝑡,ℎ+1.

34: end for
35: end if
36: end for

Regret. The performance guarantee of our algorithm is directly

linked to the regret bound of LSVI-UCB given by Th. 3.1 in [17], i.e.

O(
√︂
𝑑3𝐻4𝑇 log

2

(
2𝑑𝑇𝐻
𝛿

)
) - where we replaced the original 𝑡 by the

total number of rounds𝑇𝐻 from our setting. Given that this bound
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Table 2: Data statistics.

Net. #Users #Edges #Orig.-messages #Retweets

Weibo 1.8M 308M 300K 23.8M

Twitter 11.6M 309M 242M 341.8M

is super-linear in 𝐻 , it dominates the estimator bound that we find

in our paper for the Good-Turing estimation. Hence the regret we

have is comparable to the one found for LSVI-UCB in [17].

5 EXPERIMENTS
The algorithm LSVI-GT-UCB – which solves Problem 2 – is tested

on three datasets: one consisting of synthetically generated data,

and two consisting of real-world data. Its performance is compared

to LSVI-UCB [17], and Fat-GT-UCB [21]. LSVI-UCB is originally de-

signed to solve use upper confidence bounds for linear function

approximation MDPs, and can be adapted to Problem 2 by equating

an episode with a campaign. Fat-GT-UCB, on the othe hand, is run

independently between episodes. As a comparison metric, we use

the total sum of cumulative rewards over all campaigns. In addition

to these two state-of-the-art solutions, we can also design two other

baselines: RL-Fat-GT-UCB is created by adapting Fat-GT-UCB to

learn from the previous episodes by averaging the GT estimators

over the episode, for each step in the horizon; and LSVI-UCB -
separate thetas, created by adapting LSVI-UCB to learn an esti-

mator per influencer. This modification enables the combination of

the estimator of the Q-function with the GT estimator in order to

estimate an influencer’s remaining potential.

5.1 Synthetic data
Experiments are run on a synthetic dataset in the following way.

First, a graph is generated using the Albert-Barabàsi model [4] for

30,000 nodes, and each influencer is chosen using their degree, i.e.,

the 𝐾 highest degrees in the graph. Then, the activation probability

of each node attached to these influencers is computed using a

sigmoid function of the scalar product of the randomly generated

context and a randomly chosen feature vector, specific to the node.

For each dimension, the feature vectors are sampled from a normal

distribution N(1, 3), and the contexts are sampled from another

normal distribution N(1, 0.1). The variance in the distribution of

user profiles is greater than that in the distribution of contexts to

mark the greater difference that can appear between users compared

to differences between messages from a campaign. The diffusion

model is assumed to be the Independent Cascade [19].

5.2 Real-world datasets
Experiments are also run on real-world datasets from the two major

micro-blogging applications, Twitter [15] and Sina Weibo [34]. The

datasets’ main statistics are presented in Table 2.

The Weibo dataset containts a log of posts (equivalent to tweets)

with each posts’s text being encoded as a distribution over 100 topics

computed using Latent Dirichlet Allocation. The dataset contains

the topic distribution for each post, the reposting logs containing

the list of unique users which had reposted the post, and infor-

mation about the original author. We processed and merged this

information in order to obtain a file containing the original post, its

author / the influencer’s Id, the set of basic user Ids which reposted

that message, and the topic distribution for the message. The set of

influencers is found by taking the ones having the highest number

of reposts, and all the tweets of the other influencers are filtered out.

During the experiments, random contexts, i.e. topic distributions,

are chosen for each round from all the available contexts in the

dataset. At the beginning of each round the context is provided by

the environment, an algorithm chooses the influencer(s), and a post

for the pair (influencer Id, context) is sampled from the log. The

new activations are given by discounting the previously seen basic

user Ids from the sampled post’s set of user Ids.

The Twitter dataset is created from a crawled dataset from Twit-

ter with tweets from August 2012. We have extracted, using 𝐾-

means, 24 centroids from the glove-twitter-2002 vocabulary, and

each tweet’s text was processed by encoding each word and re-

placing it with its nearest centroid. The original tweet text is then

replaced by a distribution over 24 centroids. Each tweet contains a

set of node Ids representing the users who retweeted it. The set of

influencers, as in the case of Sina Weibo, are chosen as the ones con-

taining the highest number of retweeting users. The experimental

simulation process is the same as the one described for Sina Weibo.

5.3 Results
The results of the experiments are averaged over 50 runs, and the

algorithms are run for 50 episodes each with a horizon of 30 rounds,

i.e., 1500 rounds in the end. For all the LSVI-based algorithms the

exploration factor is 𝛽 = 𝑐 · 𝑑𝐻
√︃
log( 2𝑑𝑇𝐻

𝛿
), where 𝑐 > 0 is an

absolute constant, 𝑇 = 50 is the number of episodes, 𝐻 = 30 is

the number of steps, 𝑑 is the dimension of the feature space. For

Sina Weibo and the synthetic dataset, an absolute constant 𝑐 = 1

performs well. However, for the Twitter dataset, we had to choose a

much smaller absolute constant, 𝑐 = 0.0005, to have an exploration

factor suitable for the scale of the reward. The dimension of the

feature space 𝑑 depends on the how the state is constructed for

each algorithm. This follows the theoretical results of Theorem 3.1

in [17], with probability set as 1 − 𝛿 = 0.99.

On the synthetic dataset (Figure 1), we see that our algorithm

outperforms the baseline methods for 𝐿 = 1 and 𝐿 = 2. For 𝐿 = 5

the LSVI-based algorithm with an estimator for each influencer

is stronger than the Good-Turing-based estimator. We witness a

saturation of the rewards when more influencers are chosen, which

explains the periodical flattening in the graphs of the reward func-

tions. The large final cumulative rewards are possible due to the

reset of counting the new activations at the start of each episode.

The results of Sina Weibo – Figure 2 – show that, in terms of

cumulative reward, LSVI-GT-UCB outperforms the other methods

for 𝐿 = 2 and 𝐿 = 5 especially. For 𝐿 = 1 it is competitive with

RL-Fat-GT-UCB, but it exhibits much lower variance in the rewards,

making it a more reasonable choice in practice.

On the other hand, in the Twitter dataset (Figure 3), our algorithm

clearly outperforms the other algorithms for 𝐿 = 1, which from

a theoretical point of view remains the main case (one decision

per round). For 𝐿 = 2 and 𝐿 = 5, the results of several algorithms

2
https://nlp.stanford.edu/projects/glove/
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Figure 1: Synthetic - Cumulative rewards, full plot (top row), plot zoomed to last 100 rounds (bottom row).
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Figure 2: Sina Weibo - Cumulative rewards, full plot (top row), plot zoomed to last 100 rounds (bottom row).

– including ours – are very close, with low variance. This may

indicate that the dataset characteristics lead to a saturation of the

rewards when more influencers are chosen at each round. The

algorithms Fat-GT-UCB and RL-Fat-GT-UCB perform similarly.

Running time. We measured the running time for all the algo-

rithms. LSVI-GT-UCB and LSVI-UCB - separate thetas take ap-

proximately 16 minutes / round with a standard deviation of about

3 seconds / round. LSVI-UCB is on average 𝐾 times faster than the

previous two approaches: about 2 minutes / round with a standard
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Figure 3: Twitter - Cumulative rewards, full plot (top row), plot zoomed to last 100 rounds (bottom row).

deviation of 2 seconds / round. This is because LSVI-GT-UCB and
LSVI-UCB - separate thetas estimate a Q-function per influ-

encer (lines 15-22 in Alg. 1), instead of a single, global one. All the

Good-Turing estimations have negligible execution cost (at most

10 secondes / round) – updating the average of hapaxes takes at

most a few seconds. The main bottleneck of LSVI-based approaches

is the regression steps occurring 𝑇 × 𝐻 times for each of the 𝐾

influencers/arms, for a total cost of the order of O(𝐾𝑑2 (𝑇𝐻 + 𝑑) if
we use matrix inversions. The linear dependence on the 𝑇𝐻 steps

and the 𝐾 influencers is unavoidable, and the main issue here is

the dimension 𝑑 of the feature map. As a side note, whenever the

dimension 𝑑 of the feature map may lead to unacceptable com-

putation time for the application scenario, one way to reduce it

would be via embedding approaches. However, we believe running

time is somewhat inconsequential in practice for the approaches

considered here, since the feedback delay – in our case, gathering

the influence lists – should dominate the computation step.

6 CONCLUSION
We introduce and study in this paper a novel online influence max-

imization problem (ECIMP), which is directly motivated by the

real-world scenarios of information diffusion where (i) the diffu-

sion medium is highly uncertain and only a few influencer nodes

may be known in advance, (ii) only a target user’s first activation
is of interest (e.g., for political endorsements or subscriptions to a

media service), and (iii) valuable side-information may be available,

allowing the agent to learn effectively within and across campaigns.

By its focus, we believe our work reduces further the gap between

theoretical studies and practical deployments. Indeed, we connect

some of the main working assumptions that have been consid-

ered for practical purposes in the recent IM literature, such as an

unknown diffusion medium and a bipartite influencer-influencee

graph abstraction thereof, spread over multiple rounds in a cam-

paign, context-dependent diffusion, and the number of distinct

activations as the objective function. Furthermore, the ability to

exploit context and correlations across campaigns is of obvious

interest, and justifies our reinforcement learning solution.

For this problem, we presented a novel algorithm, LSVI-GT-UCB,
which brings together for the first time the LSVI approach for lin-

ear function approximation and the Good-Turing estimator used in

multi-armed bandits for estimating missing mass – with an applica-

tion to contextual influence maximization over multiple influence

campaigns. LSVI-GT-UCB runs the two estimators in parallel, and

makes the optimistic choice between them when deciding which in-

fluencers to select at each step of the campaign – thus implementing

the optimism in the face of uncertainty principle. The experimental

study, performed on two real-world datasets – SinaWeibo and Twit-

ter – and a synthetically generated one, shows that LSVI-GT-UCB is
competitive to state-of-the-art baselines, and is less susceptible to

noise while allowing learning over multiple campaigns.
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