

THE UNIVERSITY OF HONG KONG

COMPUTER SCIENCE

0 F

DEPARTMENT

# iTag: Incentive-Based Tagging

Siyu Lei, Xuan S. Yang, Luyi Mo, Silviu Maniu, Reynold Cheng Department of Computer Science, The University of Hong Kong

#### Introduction **Resource needs** *sufficient number* **Under-Tag** and **Over-Tag** in of posts to get high-quality tag data. **Collaborative Tagging Systems Collaborative Tagging Data:** facilitate many applications earth.google.com **Under-Tagged Under-Tag** 0.25 Tagger Post Tag Resource Resources Unstable **Low** Quality <sup>°</sup>00 Number of Resources 0.2 Relative Frequency 100 Relative Frequency 2000 Relative Frequency Stable [navigation, education} **High** Quality Google earth **Over-Tagged** Resources {maps, geography} **Over-Tag** Wasted Posts {3dmax} $10^{1}$ $10^{2}$ $10^{3}$ $10^{4}$ $10^{5}$ 10 Number of Posts Number of Posts

**\* Problem**: how to improve the quality for collaborative tagging data?

Approach

# **Overview**



# **Tag Quality**

#### **Q** Relative Frequency Distribution (rfd) $\vec{F}_i(k)$ : Normalized number of occurrence of each tag, after resource $r_i$ has k posts.

 $\Box$  Stability  $m_i(\omega, k)$ : Average similarity of *rfds*' within window  $[k - \omega, k]$ .

**Given Stable Point:** When stability score surpasses a threshold  $\tau$ .

# **Over** – *Tagging*:

Posts given to resources that has passed stable point.

# **Tag Quality**:

• For resource  $r_i$ :  $q_i(k)$  defined on stability score. • For resource set **R**:  $q(R, \vec{k}) = \frac{1}{n} \sum q_i(k_i)$ 

# **Incentive-Based Tagging**

**Intuition**: Find the optimal ordering of the resources to achieve the best tagging quality.

□ *Input*: A set of tagged resources and budget.

**Output:** Incentive Allocation.

**Objective:** Maximize Tag Quality.

# **Incentive Allocation Strategies**

# **Random (R)**:

Randomly allocate resources to taggers to tag.

# **Given States First (FP):**

Prioritize the under-tagged resources.

## **Most Unstable First (MU)**:

Prioritize the most unstable resources ; window size  $\omega$  .

# **U** Hybrid (FP-MU):

**FP** first, switch to **MU** when each resource has  $\omega$  posts.

# Results

**Dataset**: 5000 urls and their posts from *del.icio.us* 

Figure2: Over-Tagging Posts

#### **Optimal Solution:**

- Dynamic Programming
- Need to know the posts in the future.



**Reference:** X. Yang, R. Cheng, L. Mo, B. Kao, and D. Cheung "On Incentive-Based Tagging," ICDE, 2013.

