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ABSTRACT
Social networks are commonly used for marketing purposes.
For example, free samples of a product can be given to a
few influential social network users (or “seed nodes”), with
the hope that they will convince their friends to buy it. One
way to formalize marketers’ objective is through influence
maximization (or IM), whose goal is to find the best seed
nodes to activate under a fixed budget, so that the number
of people who get influenced in the end is maximized. Recent
solutions to IM rely on the influence probability that a user
influences another one. However, this probability information
may be unavailable or incomplete.

In this paper, we study IM in the absence of complete infor-
mation on influence probability. We call this problem Online
Influence Maximization (OIM) since we learn influence prob-
abilities at the same time we run influence campaigns. To
solve OIM, we propose a multiple-trial approach, where (1)
some seed nodes are selected based on existing influence
information; (2) an influence campaign is started with these
seed nodes; and (3) users’ feedback is used to update influ-
ence information. We adopt the Explore–Exploit strategy,
which can select seed nodes using either the current influence
probability estimation (exploit), or the confidence bound on
the estimation (explore). Any existing IM algorithm can be
used in this framework. We also develop an incremental algo-
rithm that can significantly reduce the overhead of handling
users’ feedback information. Our experiments show that our
solution is more e↵ective than traditional IM methods on
the partial information.

1. INTRODUCTION
In recent years, there has been a lot of interest about how

social network users can a↵ect or influence others (via the
so-called word-of-mouth e↵ect). This phenomenon has been
found to be useful for marketing purposes. For example,
many companies have advertised their products or brands
on social networks by launching influence campaigns, giving
free products to a few influential individuals (seed nodes),
with the hope that they can promote the products to their
friends [19]. The objective is to identify a set of most influ-
ential people, in order to attain the best marketing e↵ect.

⇤Work mainly done while the author was a�liated with
University of Hong Kong.

Feedback

1

42

3

Uncertain Influence Graph

Selection Phase

Heuristic

Explore‐Exploit (EE)

Choose Seeds

Update Graph

1

42

3

0.5

0.1 0.9

0.5
0.2

Real World

Seed 
Nodes

PDF

X

Action Phase

follow

follow follow

followfollow

Figure 1: The OIM framework.

This problem of influence maximization (IM) has attracted
a lot of research interest [6, 7, 9, 10,22].
Given a promotion budget, the goal of IM is to select the

best seed nodes from an influence graph. An influence graph
is essentially a graph with influence probabilities among nodes
representing social network users. In the independent cascade
model, for example, a graph edge e from user a to b with
influence probability p implies that a has a chance p to
a↵ect the behavior of b (e.g., a convinces b to buy a movie
ticket) [16]. Given an influence graph, IM aims to find k
seed nodes, whose expected number of influenced nodes, or
influence spread, is maximized. Marketing e↵orts can then
be focused on the k nodes (or persons). In the IM literature,
these seed nodes are said to be activated [6, 7, 9, 10,22].
While existing IM algorithms e↵ectively obtain the most

influential seed nodes, they assume that the influence proba-
bility value between each pair of nodes is known. However,
this assumption may not hold. Consider a marketing firm
starting in a new city with some knowledge of the social
network of the users in the city. The company, however,
does not know how influence propagates among these users.
Unless the influence probability information is known, the
marketing firm cannot run an IM algorithm and decide the
target users. To obtain these values, action logs, which record
the social network user’s past activities, can be used [12].
This information may not be readily available.

Is it possible to perform IM on a social network, even if the
information about influence probabilities is absent or incom-
plete? We call this problem Online Influence Maximization
(OIM), as we aim at discovering influence probabilities at
the same time we are performing influence campaigns. (We
say that an IM algorithm is o✏ine, if it assumes that the
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maximization (IM) when the influence 
probabilities between users are 
unknown

• Framework: given a budget (number 
of trials), maximise influence spread

• different case from one-step IM
• classic tradeoff between exploration 

(refining the model) and exploitation 
(using the model)

appearing in the reversed reachable sets, and chooses the
nodes with the highest frequencies; TIM+ [26] is an extension
of TIM for large influence graphs.
We say that the above IM algorithms are o✏ine, since

they are executed on the influence graph once, assuming
knowledge of p

ij

for every i and j. If these values are not
known, these algorithms cannot be executed. This problem
can be addressed by online IM algorithms, as we will discuss
next.

4. MAXIMIZING INFLUENCE ONLINE
The goal of the online influence maximization (or OIM)

is to perform IM without knowing influence probabilities in
advance. Given a number N of advertising campaigns (or
trials), and an advertising budget of k units per trial, we
would like to select up to k seed nodes in each trial. These
chosen nodes are then advertised or activated, and their
feedback is used to decide the seed nodes in the next trial.
Let us formulate the OIM problem below.

Problem 2. Given a weighted graph G = (V,E, p) with
unknown probabilities p

uv

, and a budget consisting of N
trials with 1 6 k 6 |V | activated nodes per trial, the online
influence maximization (OIM) problem is to find for each
1 6 n 6 N a set S

n

of nodes, with |S
n

| 6 k, such that

E
h���
S

16n6N

I(S
n

)
���
i
is maximal.

Note that the IM problem, discussed in Section 3, is a
special case of the OIM problem (by setting N = 1). Since
solving the IM problem is computationally di�cult, finding
a solution for the OIM is also challenging. We propose
a solution that consists of multiple trials. In each trial,
a selection (for choosing appropriate seed nodes) and an
action (for activating the seed nodes chosen) is performed
(Figure 1). The seed selection makes use of one of the o✏ine
IM algorithms discussed in Section 3.1

We next present the uncertain influence graph, which cap-
tures the uncertainty of influence probabilities (Section 4.1).
We then discuss our solution based on this graph in Sec-
tion 4.2.

4.1 The Uncertain Influence Graph
We assume that a social network, which describes the

relationships among social network users, is given. However,
the exact influence probability on each edge is not known. We
model this by using the uncertain influence graph, in which
the influence probabilities of each edges are captured by
probability density functions, or pdf (Figure 1). The pdf can
be refined based on the feedback returned from a trial. Since
influence activations are binary random variable, we capture
the uncertainty over the influence as a Beta distribution.
Specifically, the random variable of the influence probability
from node i to node j, P

ij

is modeled as a Beta distribution
having probability density function:

f
Pij (x) =

x↵ij�1(1� x)�ij�1

B(↵
ij

,�
ij

)
,

where B(↵
ij

,�
ij

) is the Beta function, acting as a nor-
malization constant to ensure that the total probability
mass is 1, and ↵

ij

and �
ij

are the distribution param-
eters. For the Beta distribution, E[P

ij

] =
↵ij

↵ij+�ij
and

1In this paper we assume that the advertising budget k is
fixed for each trial.

�2[P
ij

] =
↵ij�ij

(↵ij+�ij)
2
(↵ij+�ij+1)

. An advantage of using the

Beta distribution is that it is a conjugate prior for Bernoulli
distributions, or more generally, binomial distributions. This
allows us to compute the posterior distributions easily when
new evidence is provided. Section 6 explains this in more
detail.

At the time of the first trial, we assume no prior informa-
tion about the influence graph, except global ↵ and � pa-
rameters, shared by all edges, i.e., P

ij

⇠ B(↵,�) 8(i, j) 2 E.
These global ↵ and � parameters represent our global prior
belief of the uncertain influence graph. In the absence of any
better prior, we can set ↵ = � = 1, with B(1, 1) being the
uniform distribution.
Our model can be extended to handle various prior infor-

mation about the influence graph. For example, if we have
individual prior knowledge (↵

ij

,�
ij

) about an edge, we can
set P

ij

as P
ij

⇠ B(↵
ij

,�
ij

). When we have access to only
the mean and variance of the influence of an edge, we can
derive ↵

ij

and �
ij

from the formulas of E[P
ij

] and �2[P
ij

]
given above. For the situation in which some action logs
involving the social network users are available, algorithms
for learning the influence probabilities from these logs [11,12]
can be first applied, and the estimated influence probabilities
can then be used as prior knowledge for the graph.

4.2 The OIM Framework

Algorithm 1 Framework(G, k, N)

1: Input: # trials N , budget k, uncertain influence graph
G

2: Output: seed nodes S
n

(n = 1 . . . N), activation results
A

3: A ;
4: for n = 1 to N do
5: S

n

 Choose(G, k)
6: (A

n

, F
n

) RealWorld(S
n

)
7: A A [A

n

8: Update(G,F
n

)
9: return {S

n

|n = 1 . . . N}, A

Algorithm 1 depicts the solution framework of the OIM
problem. In this algorithm, N trials are executed. Each
trial involves selecting seed nodes, activating them, and
consolidating feedback from them. In each trial n (where
n = 1, . . . , N), the following operations are performed on the
uncertain influence graph G:

1. Choose (Line 5): A seed set S
n

is chosen from G,
by using an o✏ine IM algorithm, and strategies for
handling the uncertainty of G (Section 5).

2. RealWorld (Lines 6–7): The selected seeds set is tested
in the real world (e.g., sending advertisement messages
to selected users in the social network). The feedback
information from these users is then obtained. This is
a tuple (A

n

, F
n

) comprised of: (i) the set of activated
nodes A

n

, and (ii) the set of edge activation attempts
F

n

, which is a list of edges having either a successful
or an unsuccessful activation.

3. Update (Line 8): We refresh G based on (A
n

, F
n

) (Sec-
tion 6).

One could also choose not to update G, and instead only
run an o✏ine IM based on the prior knowledge. Our ex-
perimental results show that the influence spread under our
OIM framework with proper updates is better than the one

Effectiveness and Efficiency

!Feedback  

Global   

Local   

Crucial component — graph update
After each step and feedback, the uncertain 
influence graph is updated, using a 
combination of:
• local update:  each edge in the feedback is 

updated in a Bayesian manner (Beta 
distributions)

• global update: every edge in the graph is 
updated using methods such as maximum 
likelihood or least squares regressionModel: an uncertain graph of influence probabilities, 

starting from prior knowledge
Algorithm: iterative process involving selection of seed 
users, feedback gathering, and update of the model

• Seed selection: use the uncertain graph for selection, 
by applying IM black box algorithms and explore—
exploit strategies (ε-greedy, confidence bound, exp. 
gradient)

• Real-world feedback: test the chosen seeds in the 
real-world, and get an activation feedback trace
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Figure 4: ExploreÐexploit strategies
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(b) Effect of priors
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Figure 5: Comparing different updating methods

Þnd thatCBperforms close toReal, and its discount on the spread
decreases withN. For example, whenk = 5, the discount decreases
from 30%at N = 10 to 13%at N = 50. This indicates that, with
more real-world feedback, the learned graph forCBis closer to the
real graph, and thus, leads to a closer result toReal.

ExploreÐExploit Strategies.We compare three versions of the
EE strategies for differentk in Figure 4. We observe thatExploit
is the worst, since it may suffer from the wrong prediction of the
inßuence probabilities and does not explore other potential high
inßuencing nodes.CBis the best, especially, for smallk. When
k = 5,N = 50, CBis about20%and32%better than! -greedy and
Exploit , respectively. The reason is that for a smallerk, fewer
feedback tuples are returned in one trial, which makes the learned
inßuence graph converge to the real graph slower. Hence, the effect
of exploration is strengthened, which is more favorable toCB. We
have also conducted experiments for! -greedy by varying! . We
observe that its performance is sensitive to! and! = 0.1 is the best
one in our results, but it is still worse thanCBin all cases.

Updating the uncertain inßuence graph.In Figure 5a, we com-
pare different updating methods for the uncertain inßuence graph.
AlthoughNOmakes use of the prior knowledge about the inßuence
graph to select seeds, it still performs worse than other update op-
tions.LOCis slightly better, but still worse thanMLEandLSE, since
it does not employ any global update and it suffers from the sparse-
ness of the activations.MLEis the best (about25%better thanLSE
and40%better thanLOC), which is consistent with the fact thatMLE
makes use of the full feedback to update the graph whileLSEonly
utilizes the set of successfully activated nodes.

We also test the updating methods with different priors (Figure 5b)
to check whether they are sensitive to the prior. We observe that
while LOCandNOßuctuate a lot with different priors,MLEandLSEÕs
performance is very stable. In fact, during different runs ofMLEand
LSEwith different priors, the global" values all converge to around
27. This supports the fact that the global updating techniques are
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Figure 6: Cumulative running time

crucial when we do not have good prior information. Even an inexact
choice of prior will be generally Þxed, minimizing the impact on
performance.

EfÞciency. In Figure 6a, we illustrate the cumulative running
time for runningN trials for different algorithms.Randomand
MaxDegreeare most efÞcient as they do not rely on any inßuence
evaluation. With the help of incremental approach,CB-INCruns sig-
niÞcantly faster thanCB, and for the case whereN > 10, it achieves
about 10 times speedup. For instance, atN = 50, CB-INCreduces
the running time by88%, compared toCB. This is intuitive, as in the
Þrst few trials the graph is more uncertain, and the updates affect the
samples a lot. However, whenN > 10, we observe that the global
priors become more stable, leading to a high ratio of re-using sam-
ples (e.g., the ratio is about80%to 99%whenN > 10). Moreover,
the average in-degree ofNETPHY is 12.46, making the time of
generating a new sample about an order of magnitude slower than
re-using a sample. These two factors together makeCB-INChave a
much more efÞcient performance thanCB.

We then show the efÞciency results by ÞxingBudget= 50 and
varyingk in Figure 6b. The running time ofMaxDegreeandRandom
is stable for variousk, while CBandCB-INCshow a decline on
efÞciency whenk decreases. This is because a smallerk indicates
that more trials are required to invest all budget, and so, TIM+
should be executed more often, for a general decrease in efÞciency.
Another observation is that the improvement ofCB-INCover CB
increases withk. This further strengthens the utility of usingCB-
INCin practice. Figure 6b and Figure 3a together show a tradeoff
of settingk: a smallerk leads to a better performance in spread
but worse performance in efÞciency. We suggest to set a smallk to
ensure the algorithmÕs better performance in spread. The value ofk
will depend on how much total time that the user can afford.

Effect of #. We also verify the effect of# in the incremental
approach by varying# from 0.01to 0.03and Þxingk = 1,Budget=
50. We compare them withCB, the non-incremental algorithm. First,
a smaller# gives better results in terms of inßuence spread. For
instance, it leads to 3%, 5%, 15% discount in spread compared with
CBfor # = 0.01,0.02,0.03, respectively. However, a smaller# leads
to a slowdown in efÞciency since it has a stricter requirement in
global check. For example, the running time for# = 0.01 is about
28%slower than the one for# = 0.02and38%worse than the one
for # = 0.03.

Discussion.The OIM framework is highly effective in maximiz-
ing inßuence when the real inßuence probabilities are unknown. In
this framework,MLEis the best updating method. Moreover,CB
andCB-INCconsistently outperform other algorithms. By using
CB-INC, we can also signiÞcantly improve the efÞciency ofCB, with
only a small discount in inßuence spread.
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(a) Varying k under Þxed budget
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(b) Varying k under Þxed trials
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Figure 3: Heuristic-based v.s. ExploreÐExploit.

Table 2: Datasets

Dataset NETHEPT NETPHY DBLP

# of Nodes 15K 37K 655K
# of Edges 59K 231K 2.1M
avg. degree 7.73 12.46 6.1
max. degree 341 286 588

When the chosen seed nodes are tested on whether they can inßu-
ence other nodes, the simulator runs a single independent cascade
simulation onG, and obtains feedback informationFn, in a form of
(i, j,ai j) andAn, the set of successfully activated nodes. We mea-
sure the effectiveness of an OIM solution by its inßuence spread in
the real world, afterN trials, as the total number of successfully ac-
tivated nodes in these trials, i.e,|[N

n=1 An|. We repeat each solution
10 times and report the average.

Datasets. We have studied several real social network datasets.
We have usedNETHEPT andNETPHY are collaboration networks,
obtained from arXiv.org in the High Energy Physics Theory and
Physics domains, respectively. We have also used theDBLP graph,
which is an academic collaboration network. In these datasets, nodes
represent authors, and edges representing co-authorship. These
datasets are commonly used in the literature of inßuence maximiza-
tion [6,7,12,16,27]. Table 2 shows the details of these datasets.

Options for OIM algorithm. We have evaluated several possible
options for theseed selection andgraph update components for our
OIM solution:

[Choosing seeds]
¥ Heuristic-based strategies:Random, MaxDegree;
¥ ExploreÐExploit strategies: 1)Exploit contains only exploit

algorithm; 2)e-greedy representse-greedy algorithm; 3)
CB is our ConÞdence-Bound exploreÐexploit algorithm with
Exponentiated Gradient update.

[Updating graph]
¥ NO does not conduct any update;
¥ LOC only local updates;
¥ LSE local and global updates where Least Squares Estimation

is adopted in global update;
¥ MLE asLSE, but Maximum Likelihood Estimation is adopted.

In our experiments, we compare the algorithms using combina-
tions of the above two components. Note thatRandom andMaxDe-
gree do not rely on the inßuence probability of the edges, and they
are not combined with update methods. When a particular EE strat-
egy is adopted, the update method would be speciÞed, for instance,
CB+MLE means that we useCB with MLE update. By default, we use

MLE for updating the graph. Furthermore, if the EE strategy is used
in choosing seeds, we useCB by default.

When an IM algorithm is invoked in an EE strategy, we use TIM+
since it is the state-of-art inßuence maximization algorithm. We also
compare the incremental approach with the non-incremental one for
EE strategy. For example, we denote the incremental version forCB

asCB-INC.
Parameters. By default, the global prior is set to beB(1,19),

q = {�1,0,1} in CB, e = 0.1 in e-greedy, andt = 0.02 in the
incremental approach.

Our algorithms, implemented in C++, are conducted on a Linux
machine with a 3.40 GHz Octo-Core Intel(R) processor and 16GB of
memory. Next, we focus onNETPHY, and evaluate different com-
binations of the algorithms in our OIM framework. We summarize
our results for other datasets in Section 8.2.

8.1 Results on NetPHY
Heuristic-based v.s. Explore–Exploit. We Þrst Þx the total

budget and verify how the OIM algorithms perform with different
number of trials. We setBudget = 50, and varyk in { 1,5,10,25,50} .
By varyingk, we essentially vary the total budget. For example, with
k = 5, 50 units of budget is invested overN = 10 trials. Figure 3a
shows our results. SinceRandom only has inßuence spread less
than200on average, we do not plot it. We observe that the spread
of MaxDegree does not change much since it does not depend
on the real-world feedback. ForCB, its spread increases whenk
decreases and it is better thanMaxDegree whenk 6 10 (or N � 5).
SpeciÞcally, whenk = 1, CB is about35%better thanMaxDegree.
The reason is that, forCB, a smallerk indicates more chances to
get real-world feedback, and thus, more chances to learn the real
inßuence graph, which leads to a better result. Moreover, when
k = 50, all budget is invested once, which can be regarded as an
ofßine solution, and produces the worst result forCB. This further
indicates the effectiveness of our OIM framework. ForCB-INC, it
performs close toCB with only a small discount (around5% for
differentk) on the spread. It supports our claim that the incremental
approach can perform without incurring much error.

We next Þxk and compare different algorithms in Figure 3b. The
results are consistent with our previous Þndings thatCB outperforms
other variants.CB-INC produces similar results withCB. We observe
that the gap betweenCB andMaxDegree increases withN andk.
For example, atN = 50, CB is about20%better thanMaxDegree
whenk = 5, and the percentage grows to45%whenk = 25. The
reason is that largerk and largerN give more chances forCB to learn
the real inßuence graph. We also plot the result for TIM+ when the
real inßuence probability is known, denoted asReal. This can be
seen as an oracle, serving as a reference for other algorithms. We


