
Network-Aware Search
in Collaborative Tagging Applications:
Instance Optimality versus Efficiency

Silviu Maniu, Bogdan Cautis

University of Hong Kong & Univ. Paris-Sud / INRIA Saclay

CIKM 2013

A Web of social interactions

Social Web: new development to the Web – users, their
relationship and their data.

Significant and highly qualitative portion of the Web:

I either built as explicitly social (Facebook, Google+, Twitter),
or

I content-based, but with social communities acting as
“engine” (Wikipedia, blogs, forums) - implicitly social

Larger user bases better search models for data relevance,
freshness guarantees.

The social tagging context

Collaborative tagging networks: a good abstraction of social
Web applications

I users form a social network (may reflect proximity, similarity,
friendship, closeness, etc)

I user tag items (e.g.,documents, URLs, photos, etc) from a
public pool of items
I examples: Flickr, Delicious, Netflix, Youtube, even Twitter

Users search for items having certain tags

Outline

Problem definition

Solution

Approximation algorithms

Experiments

Outline

Problem definition

Solution

Approximation algorithms

Experiments

The social tagging context

Setting: a collaborative tagging environment in which we have:

I set of items I , set of users U, set of tags T .

I tagging relation: Tagged(user,item,tag)

Social Network: undirected weighted graph G = (U ,E , σ)

I nodes represent users

I σ associates to each edge e = (u1, u2) a value in (0, 1] called
the proximity between u1 and u2 (a social score)

The top-k retrieval problem

Problem (Top-k retrieval)

Given a seeker s, a query Q = {t1, ..., tr} (a set of r distinct tags),
an integer value k, and an item scoring model, retrieve the top-k
items

I main challenge: efficiency and applicability

Difference to classical search: item scores depend on its taggers
and their proximity to the seeker

Search example

Scenario: Alice wants top-2 documents for query {news, site}
 result we desire is D4, D2

D3: site D2: news, site

D4: news, site

D5: news, site

Alice

Bob

Charlie
Ed

Danny0.9

0.6

0.25

0.5

0.9

D1: news

D3: news, site

D4: news

news site
doc tf doc tf

D4 2.00 D3 2.00
D3 1.00 D4 1.00
D5 1.00 D5 1.00
D2 1.00 D2 1.00
D1 1.00 D1 0.00

user prox.

Bob 0.90
Charlie 0.60
Danny ?
Ed ?

What would happen in classical search?

each tag has same weight in term-frequency lists; TA/NRA
[Fagin01]

 top-2 result: D4, D3

D3: site D2: news, site

D4: news, site

D5: news, site

Alice

Bob

Charlie
Ed

Danny

D1: news

D3: news, site

D4: news

news site
doc tf doc tf

D4 2.00 D3 2.00
D3 1.00 D4 1.00
D5 1.00 D5 1.00
D2 1.00 D2 1.00
D1 1.00 D1 0.00

user prox.

Bob 0.900
Charlie 0.600
Danny ?
Ed ?

What would happen in classical search?

each tag has same weight in term-frequency lists; TA/NRA
[Fagin01]
 top-2 result: D4, D3

D3: site D2: news, site

D4: news, site

D5: news, site

Alice

Bob

Charlie
Ed

Danny

D1: news

D3: news, site

D4: news

news site
doc tf doc tf

D4 2.00 D3 2.00
D3 1.00 D4 1.00
D5 1.00 D5 1.00
D2 1.00 D2 1.00
D1 1.00 D1 0.00

user prox.

Bob 0.900
Charlie 0.600
Danny ?
Ed ?

Social frequency

Classic term frequency is replaced by a monotonic measure
depending on the seeker and a parameter α:

fr(i | u, t) = α× tf (t, i) + (1− α)× sf (i | u, t)

sf (i | u, t) represents the social frequency:

sf (i | u, t) = ∑
v∈{v |Tagged(v ,i ,t)}

σ(u, v)

The extreme cases:

I α = 1 classical search

I α = 0 exclusively social search

Social frequency

Classic term frequency is replaced by a measure depending on the
seeker and a parameter α:

fr(i | u, t) = α× tf (t, i) + (1− α)×sf (i | u, t)

sf (i | u, t) represents the social frequency:

sf (i | u, t) = ∑
v∈{v |Tagged(v ,i ,t)}

σ(u, v)

The extreme cases:

I α = 1 classical search

I α = 0 exclusively social search

The scoring model

score(i | u, t) is the score of item i for the given seeker u and tag
t: e.g., tf-idf : score(i | u, t) = fr(i | u, t)× idf (t), BM25

score(i | u,Q) is the overall score of i for seeker u and query Q:
e.g., monotone aggregation functions: sum, max, avg

Considering only direct connections

scores depend on proximity: per-seeker lists [Amer-Yahia08]
 top-2 result:

D3: site D2: news, site

D4: news, site

D5: news, site

Alice

Bob

Charlie
Ed

Danny0.9

0.6 D1: news

D3: news, site

D4: news

news site
doc tf doc tf

D5 0.60 D3 0.90
D3 0.00 D5 0.60
D4 0.00 D4 0.00
D2 0.00 D2 0.00
D1 0.00 D1 0.00

user prox.

Bob 0.90
Charlie 0.60
Danny 0.00
Ed 0.00

Considering only direct connections

scores depend on proximity: per-seeker lists [Amer-Yahia08]
 top-2 result: D5, D3

D3: site D2: news, site

D4: news, site

D5: news, site

Alice

Bob

Charlie
Ed

Danny0.9

0.6 D1: news

D3: news, site

D4: news

news site
doc tf doc tf

D5 0.60 D3 0.90
D3 0.00 D5 0.60
D4 0.00 D4 0.00
D2 0.00 D2 0.00
D1 0.00 D1 0.00

user prox.

Bob 0.90
Charlie 0.60
Danny 0.00
Ed 0.00

Outline

Problem definition

Solution

Approximation algorithms

Experiments

Adding indirect connections

indirectly connected users should be relevant too
e.g., Danny might be more similar to Alice than Charlie

D3: site D2: news, site

D4: news, site

D5: news, site

Alice

Bob

Charlie
Ed

Danny0.9

0.6

0.25

0.5

0.9

D1: news

D3: news, site

D4: news

news site
doc tf doc tf

D5 0.60 D3 0.90
D3 0.00 D5 0.60
D4 0.00 D4 0.00
D2 0.00 D2 0.00
D1 0.00 D1 0.00

user prox.

Bob 0.90
Charlie 0.60
Danny ?
Ed ?

Extended proximity

Extended proximity (σ+): we want to compute a social score even
for users that are not directly connected to s.

sf (i | u, t) = ∑
v∈{v |Tagged(v ,i ,t)}

σ+(u, v)

Possible definitions for σ+

On a path, p = (u1, . . . , ul), monotonically aggregate the weights:

I Example 1: path multiplication σ+(p) = ∏i σ(ui , ui+1)

I Example 2: minimum value on a path
σ+(p) = min{σ(ui , ui+1)}

I Example 3: exponential decay σ+(p) = λ
−∑i

1
σ(ui ,ui+1) , λ ≥ 1

Then choose the optimal of the aggregated paths:

σ+(s, u) = maxp{σ+(p) | s p
 u}.

Considering indirect connections

per-seeker proximity lists
e.g.

D3: site D2: news, site

D4: news, site

D5: news, site

Alice

Bob

Charlie
Ed

Danny0.9

0.6

0.25

0.5

0.9

D1: news

D3: news, site

D4: news

news site
doc tf doc tf

D5 0.60 D3 0.90
D3 0.00 D5 0.60
D4 0.00 D4 0.00
D2 0.00 D2 0.00
D1 0.00 D1 0.00

user prox.

Bob 0.90
Danny 0.9x0.9
Charlie 0.60
Ed 0.6x0.5

Considering indirect connections

per-seeker proximity lists
 top-2 results: D4, D2

D3: site D2: news, site

D4: news, site

D5: news, site

Alice

Bob

Charlie
Ed

Danny0.9

0.6

0.25

0.5

0.9

D1: news

D3: news, site

D4: news

news site
doc tf doc tf

D4 1.11 D3 1.20
D2 0.81 D4 0.81
D5 0.60 D2 0.81
D3 0.30 D5 0.60
D1 0.30 D1 0.00

user prox.

Bob 0.90
Danny 0.81
Charlie 0.60
Ed 0.30

Algorithm

Our goal: early-termination algorithm, in the style of TA/NRA:
inverted lists of tf values, and proximity lists are acessed
sequentially.

Key subroutine: getting the next closest user

I pointer increment in the user proximity lists

Algorithm

Previous approach: ContextMerge [Schenkel08] - precomputed
proximities for all user pairs.

Major drawbacks:

I high disk space cost: ∼ 700 TB for Delicious, even bigger for
Facebook

I limited applicability: social scores can evolve (e.g., tag
similarity), lists need to be kept up to date

Our contribution: the SNS algorithm

Observation
The visit of the network in decreasing order of proximity (w.r.t the
seeker) can be done on the fly and as needed

I for a wide family of σ+ functions - monotone functions
(including the 3 examples)

Advantages:

I a typical network can easily fit in main-memory

I spare the potentially huge disk volumes required previously

I social score updates become a non-issue

I full personalization: each seeker can choose any function

Our contribution: the SNS algorithm

Observation
The visit of the network in decreasing order of proximity (w.r.t the
seeker) can be done on the fly and as needed

I for a wide family of σ+ functions - monotone functions
(including the 3 examples)

Advantages:

I a typical network can easily fit in main-memory

I spare the potentially huge disk volumes required previously

I social score updates become a non-issue

I full personalization: each seeker can choose any function

Computing the proximities

The previous three σ+ examples satisfy the following property
(Descending monotonicity):

Property

Given a social network G and a seeker user s, for any other user v
in G that is connected to s we have σ+(s, v) ≥ σ+(s, v .previous).

 the proximities for a given seeker can be greedily computed on
the fly - by generalizing Dijkstra’s algorithm.

Formal guarantees: correctness

Property

SNS visits the users of the network in decreasing order of their σ+

values with respect to the seeker.

Corollary

SNS visits the users who may be relevant for a query in the same
order as ContextMerge (or equivalent algorithms) and hence
outputs equivalent results.

Formal guarantees: instance optimality

Theorem
SNSα=0 is instance optimal over all algorithms that do not make
“wild guesses” and over all inputs D, when
cost(A,D) = users(A,D).

Outline

Problem definition

Solution

Approximation algorithms

Experiments

Is instance optimality enough?

No, at least in most practical scenarios

Two main reasons:

I the search may visit a significant part of the network, yet the
final top-k is established relatively soon,

I computing exact shortest paths, even in an optimal manner,
still has a significant execution overhead.

Possible directions:

1. tighter bounds for the termination condition, by estimating
unseen proximities,

2. estimate all user proximities, via approx. shortest paths.

Is instance optimality enough?

No, at least in most practical scenarios

Two main reasons:

I the search may visit a significant part of the network, yet the
final top-k is established relatively soon,

I computing exact shortest paths, even in an optimal manner,
still has a significant execution overhead.

Possible directions:

1. tighter bounds for the termination condition, by estimating
unseen proximities,

2. estimate all user proximities, via approx. shortest paths.

Approximations - estimating score bounds

Termination conditions too weak in practice, values drop rapidly:

0 10 000 20 000 30 000 40 000 50 000
Position

0.02

0.04

0.06

0.08

0.10

Proximity

 having a high-level description of the proximities, can lead to
tighter score estimations but approximate results

Two approaches for estimation using a probabilistic parameter δ:

1. storing high level statistics, mean and variance (SNS/MV)

2. storing histograms of the proximity vectors (SNS/H)

Approximations - estimating score bounds

Termination conditions too weak in practice, values drop rapidly:

0 10 000 20 000 30 000 40 000 50 000
Position

0.02

0.04

0.06

0.08

0.10

Proximity

 having a high-level description of the proximities, can lead to
tighter score estimations but approximate results

Two approaches for estimation using a probabilistic parameter δ:

1. storing high level statistics, mean and variance (SNS/MV)

2. storing histograms of the proximity vectors (SNS/H)

Approximations - estimating user proximities SNS/L

Adaptation of the landmarks approach of [Potamias09]:

I for a number of d landmarks, compute the entire proximity
vector

I by triangle inequality, we can obtain upper and lower bounds
of any seeker, user pair:

min(
σ+(s, li)

σ+(li , v)
,

σ+(li , v)

σ+(s, li)
) ≥ σ+(s, v) ≥ σ+(s, li)× σ+(li , v)

I by acessing sorted landmark lists à la TA we can estimate
user proximities without needing expensive priority queues.

Outline

Problem definition

Solution

Approximation algorithms

Experiments

Experiments: datasets

Statistic Delicious Twitter

users 80,000 570,387
items 595,811 1,570,866
tags 198,080 305,361

(u, i , t) triples 2,863,365 8,753,706

distinct items/user 9.59 10.10
distinct tags/item 4.22 1.39
distinct tags/user 15.64 9.45

For experiments, three pairwise similarity networks (tag, item, and
item-tag)

Experiments: performance

00.10.20.30.40.5
0

0.5

1

1.5

α

ru
n
n
in
g
ti
m
e(

se
c)

tag similarity / Delicious

00.10.20.30.40.5
0

0.2

0.4

0.6

α

tag similarity / Twitter

ContextMerge SNS SNS/MV SNS/H SNS/L

I significant gains in performance, for both exact and
approximate approaches

Experiments: precision/speed tradeoff

0 0.2 0.4 0.6 0.8 1
0.996

0.997

0.998

0.999

1.000

δ

P
re

ci
si

on

precision

0

0.1

0.2

0.3

0.4
speedup

SNS/MV

0 0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

δ

precision

0

1

2

3

R
el

at
iv

e
sp

ee
du

p

speedup

SNS/H

I high precision even when using simple statistics and
independence assumptions

What / when?

I exact approach: very sparse network, very low proximity
values, in cases where access is limited (e.g., Web API
requests), relatively low k,

I histograms/bounds approach: sparse network and low
proximity values, high k ,

I landmarks approach: denser networks with (relatively) high
proximity values, high k .

To summarize

I novel algorithm generalizing shortest path based social search

I instance optimal in the exclusively social case for monotonic
proximity functions,

I approximate approaches can be added to the framework, for
further efficiency

Thank you.

SNSα=0 (general flow)

Require: seeker s, query Q = (t1, . . . , tr)
initialization of the distances and max-priority queue H
candidate list D = ∅, seeker s entered to queue H
while exists an user u in the queue H do

compute σ+(s, u)
get all documents d belonging to u, tagged with t ∈ Q
compute their scores and insert them into D
prune the heads of the lists IL, removing documents in D
refine (or relax) the proximity scores for neighbours of u from G
if MinScore(D [k], q) ≥ maxl>k (MaxScore(D [l], q) and

MinScore(D [k], q) ≥MaxScoreUnseen then
break

end if
end while
return D [1], . . . ,D [k]

Experiments: scalability

1 5 10 20 30 50
0

0.2

0.4

0.6

0.8

1

1.2

k

ru
n
n
in
g
ti
m
e(

se
c)

answer size

1 2 3 5 6 7 8

·104

0

0.2

0.4

0.6

0.8

1

1.2

users

network size

ContextMerge SNS SNS/MV SNS/H SNS/L

I performance gains increase with network size, gains relatively
constant with k

Experiments: relevance

1 2 5 7 10
0

0.2

0.4

0.6

0.8

1

k

p
re
ci
si
o
n

semi-popular tags

1 2 5 7 10
0

0.2

0.4

0.6

0.8

1

k

“niche” tags

global fmul fmin fpow (λ = 1.1) fpow (λ = 2)

I social keyword queries can provide good prediction accuracy
for bookmarking

	Problem definition
	Solution
	Approximation algorithms
	Experiments

