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Location-aware top-k retrieval

Users search for specific types of restaurants near a given location.



Social-aware top-k retrieval

In social tagging applications (Flickr, Delicious, Twitter), users
search for photos/pages/items having certain tags.
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Context-aware top-k retrieval

I Collection of objects O, attributes T (e.g., keywords, tags)
I For a given context parameter C, objects o are associated to

certain attributes t, by a function score(o, t | C)
I extended to a set of attributes by monotone aggregation (e.g.,

sum).

score(o, {t1, . . . , tn} | C) = ∑(score(o, t1 | C), . . . , score(o, tn | C))

Problem (context-aware top-k retrieval)

Given a query Q = {t1, . . . , tn} ⊂ T and a context C, retrieve the
k objects o ∈ O having the highest values score(o,Q | C).



Social-aware top-k retrieval
[Amer-Yahia et al. VLDB’08, Shenkel et al. SIGIR’08, Maniu et al. CIKM’13]

Top-k retrieval in social tagging applications:

I Collaborative tagging environment: objects (e.g., photos),
users, attributes (tags), a relation
Tagged(object,user,tag)

I Social network: associates to pairs of users a social proximity
value (σ) (e.g., [0, 1] similarity in tagging)

I Social score model: a seeker-dependent score (for seeker s)

score(o, t | s) = ∑
u∈{v |Tagged(o,u,t)}

σ(s, u)

Problem (social-aware top-k retrieval)

Given a query Q = {t1, . . . , tn} and a context (e.g., the seeker s),
retrieve the k objects having the highest scores.



Social-aware top-k retrieval

Alice wants the top two documents for the query {news, site}
 a social-aware result: D4, D2

D3: site D2: news, site

D4: news, site

D5: news, site

Alice

Bob

Charlie
Ed

Danny0.9
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D1: news

D3: news, site

D4: news

news site
doc tf doc tf

D4 1.11 D3 1.20
D2 0.81 D4 0.81
D5 0.60 D2 0.81
D3 0.30 D5 0.60
D1 0.30 D1 0.00

user prox.

Bob 0.90
Danny 0.81
Charlie 0.60
Ed 0.30



Location-aware top-k retrieval
[Cong et al. VLDB’09, Christoforaki et al. CIKM’11, Cao et al. SIGMOD’11]

Top-k retrieval in spatial applications:

I Objects (e.g., documents) with attributes and geo-location.

I Spatial score model: combine textual and location relevance:

score(o, t | loc, α) = α× tf (t, o) + (1− α)× dist(o, loc)

Problem (location-aware top-k retrieval)

Given a query Q = {t1, . . . , tn}, a context (e.g., location and α),
retrieve the k objects having the highest scores.



Location-aware top-k retrieval

Top-2 query Q={t1,t2}, α = 0.7 at L0 : o4:0.92 and
o2:0.85



Query answering using views

Context-aware retrieval is inherently difficult: joint exploration of
the textual and “contextual” (e.g., spatial or social) space.

Our goal: improve efficiency by materialization, exploiting results
of previous searches (views).

Each view has a context: its usefulness is proportional to distance
w.r.t. the new context  score uncertainty, approximate top-k
results.
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Context transposition

Focus on two applications: location-aware search, social-aware
search

The context CV of a view V is a pair (CV .l , CV .α):

I location CV .l : geo-coordinates or seeker Id in a social network

I contextual parameter CV .α: the weight of the context in
scores

Transposition: adapt results for (CV .l , CV .α) to a new context
(C.l , C.α)
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Context transposition yields uncertainty

o1 {t2:1}

o2 {t1:2}
o3 {t1:1}

o5 {t1:1,t2:1}

o4 {t2:2}

L0: Q

L2: V2; V3

L1: V1

 

V1=(L1,{t1,t2}) V2=(L2,{t1}) V3=(L2,{t2})
o sc bsc o sc bsc o sc bsc

o5 1.062 1.062 o2 0.946 0.946 o4 0.962 0.962
o4 1.029 1.029 o3 0.575 0.575 o5 0.450 0.450
o2 1.000 1.000 o5 0.450 0.450 o1 0.437 0.437

o4 0.262 0.262 o2 0.246 0.246

Top-2 query Q={t1,t2} at location L0
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Context transposition yields uncertainty

Reasoning based on shortest paths, i.e., the optimal is through:

C.l

u

C   .l

σ  (C.l,u)

σ  (C  .l,u)

σ  (C
.l,C

  .l) V
  +

     
   V   +   V

+
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u

C   .l
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  +
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+

I a path that has as prefix the
C.l  CV .l path - worstscore

I other known paths - bestscore



Uncertain views

I For an input query Q, after context transposition (if
necessary),

I A view V is composed of:

1. a definition def (V ): a pair query-context (QV , CV )
2. an answer set ans(V ): triples (oi ,wsci , bsci ), indicating that

object oi has a score in the range [wsci , bsci ]
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Using the views for one object’s bounds

Given a view set V and a query Q sharing the same context,
compute the tightest worst-score / best-score bounds for some
object o.

Via a linear program:

max ∑
ti∈Q

sc(o, ti | C) (1)

min ∑
ti∈Q

sc(o, ti | C) (2)

wsc ≤ ∑
tj∈QV

sc(o, tj | C), ∀V ∈ V s.t. (o,wsc, bsc) ∈ ans(V )

∑
tj∈QV

sc(o, tj | C) ≤ bsc, ∀V ∈ V s.t. (o,wsc, bsc) ∈ ans(V )

sc(o, tl | C) ≥ 0, ∀tl ∈ T



Before context transposition
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After context transposition

o1 {t2:1}

o2 {t1:2}
o3 {t1:1}

o5 {t1:1,t2:1}

o4 {t2:2}

L0: Q, V1, V2, V3 

V1=(L0,{t1,t2}) V2=(L0,{t1}) V3=(L0,{t2})
o wsc bsc o wsc bsc o wsc bsc

o5 0.957 1.167 o2 0.871 1.000 o4 0.987 1.037
o4 0.924 1.134 o3 0.500 0.650 o5 0.500 0.525
o2 0.895 1.105 o5 0.500 0.525 o1 0.362 0.512

o4 0.187 0.337 o2 0.171 0.321

How can we use the views to compute the top-2 for Q?



Using views for one object: example

Top-k using views with uncertain scores:

LP formulation to compute tightest bounds - e.g., for o5:

max sc(o5, t1 | C)+ sc(o5, t2 | C) (3)

min sc(o5, t1 | C)+ sc(o5, t2 | C) (4)

0.957 ≤ sc(o5, t1 | C)+ sc(o5, t2 | C) ≤ 1.167 (V 1)

0.500 ≤ sc(o5, t1 | C) ≤ 0.525 (V 2)

0.500 ≤ sc(o5, t2 | C) ≤ 0.525 (V 3)

 score interval for o5 between [1.000,1.050]
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Our approach for top-k using views

Adapt the TA/NRA early-termination algorithms to the case of
uncertain scores  the SR-TA and SR-NRA algorithms.

Plug the LPs in:

I the computation of worst-score/ best-score bounds,

I the computation of the termination threshold.
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Most informative answer

In some cases, the exact top-k cannot be extracted with full
confidence.

In our running example, at termination:

Candidates
obj wsc bsc

o4 1.174 1.134
o2 1.042 1.105

o5 1.000 1.050
o3 0.500 0.971
* 0 0.849

I one object guaranteed in the top-2: G = {o4}

I objects that may be in the top-2: P = {o2, o5}

I all other objects cannot be in the top-2
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Top-k using uncertain views

Problem (Top-k retrieval using uncertain views)

Given a query Q = {t1, . . . , tn} ⊂ T and a context C, given a set
of views V , retrieve from V the most informative answer (G ,P),
with

I G ⊂ O consisting of all guaranteed objects; i.e., in any data
instance, they are in the top-k for Q and C.

I and P ⊂ O consisting of all possible objects outside G; i.e.,
there exist data instances where these are in the top-k for Q
and C.
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Beyond the most informative top-k answer

Estimating the most likely top-k answer:

In the example: P = {o2 ∈ [1.042, 1.105], o5 ∈ [1.000, 1.050]}.

If we assume a uniform distribution in the intervals:

P[o2 ≥ o5] =0.989

P[o5 > o2] =0.011

=⇒ the most likely top-k is G ∪ {o2}: P[{o4, o2}] = 0.989

Ways to evaluate:

I naive enumeration: good if |P | is small,

I sampling or probabilistic top-k [Soliman et. al, VLDBJ10]
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View selection

The P and G sets might be too expensive to compute, if the view
set is very large, even using early-termination algorithms.

Solution: select few most relevant views, i.e., a subset Ṽ ⊂ V
I based on view definition, result statistics (see paper)

I trade-off between size of Ṽ and “quality” of the resulting
(G̃ , P̃) pair, in terms of distance to (G ,P):

∆ =

( ˜|P |
k − ˜|G |

)
−

(
|P |

k − |G |

)

Final refinement: compute tightest bounds only for objects in
G̃ ∪ P̃
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Formal results

Instance optimality: For Ai ∈ A and A2 ∈ A, write A1 � A1 iff for
all sets of views V and all data instance D, A2 costs at least as
much as A1.

Lemma

SR-NRAsel 6� SR-NRAnosel 6� SR-NRAsel .

SR-TAsel 6� SR-TAnosel 6� SR-TAsel .

Theorem
When we restrict the class of views to pairwise disjoint views:

I SR-TAsel is instance optimal over A.

I SR-NRAsel is instance optimal over A (when only sequential
accesses are allowed).



Putting it all together

ProcessQueryUsingViews(V ,Q,C, k)

Require: query Q, views V , context C, top k required
1: for V ∈ V do
2: transpose the context CV to C
3: end for
4: Ṽ ← view selection on V for Q
5: (G̃ , P̃)← SR-TA(Q, k, Ṽ) or SR-NRA(Q, k, Ṽ)
6: (G ,P)← Refine(G̃ , P̃)
7: E = Estimate(P, k − |G |)
8: return G ∪ E
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Experiments: location-aware search
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Figure : Performance and precision of SR-TAsel versus exact
early-termination algorithm (IR-tree) (grey=top-10, white=top-20).

I PolyBot dataset: 6,115,264 objects and 1,876 attributes

I Views: 20 views of 2-term queries at 5 random locations,
various list sizes

I Test: 10 queries at 5 locations and α ∈ {0.7, 0.8, 0.9}



Experiments: social-aware search
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Figure : Social-aware search: performance and precision of SR-TAsel

versus ContextMerge(grey=top-10, white=top-20).

I Delicious data: 80000 users, 595811 objects, 198080
attributes

I Social network: 3 similarity networks (tag, item, item-tag)

I Views: 10 users each having 40 views of 1 and 2 tag queries

I Test: 10 3-tag queries for 5 seekers and α ∈ {0, 0.1, 0.2, 0.3}



Summary

We formalize and study the problem of context-aware top-k
processing based on (possibly uncertain) views.

I Context transposition, exemplified in two application scenarios

I New semantics based on views: most informative result

I Sound and complete adaptation of TA / NRA

I Probabilistic refinement: most likely top-k result
I Further efficiency: view selection

I instance optimality under restrictions

Thank you.



Threshold algorithms: SR-TA

Adaptation of TA algorithm[Fagin01], SR-NRA similar.
Require: query Q, size k, views V (after transposition)
1: D = ∅
2: loop
3: for each view V ∈ V in turn do
4: (oi ,wsci , bsci )← next tuple by sequential access in V
5: read by random-accesses all other lists V ′ ∈ V for tuples (oj ,wscj , bscj ) s.t.

oi = oj
6: wsc ← solution to the MP in Eq. (1) for oi
7: bsc ← solution to the MP in Eq. (2) for oi
8: add the tuple (oi ,wsc, bsc) to D
9: end for

10: τ ← maximal possible score of objects not encountered
11: wsct ← lower-bound score of kth candidate in D
12: if τ ≤ wsct then
13: break
14: end if
15: end loop
16: (G ,P)=Partition(D, k)
17: return (G ,P)



Threshold algorithms: Partition(D, k)

Require: candidate list D, parameter k
1: G ← ∅ the objects guaranteed to be in the top-k
2: P ← ∅ the objects that might enter the top-k
3: for each tuple (o, bsc ,wsc) ∈ D, o 6= ∗ do
4: x ← |{(o ′, bsc ′,wsc ′) ∈ D | o ′ 6= o, bsc ′ > wsc}|
5: wsct ← lower-bound score of kth candidate in D
6: if x ≤ k and for (∗,wsc∗, bsc∗) ∈ D, bsc∗ ≤ wsc then
7: add o to G
8: else if bsc > wsct then
9: add o to P

10: end if
11: end for
12: return G , P



Experiments: context-agnostic setting

Input data:

I synthetic: 100,000 objects and 10 attributes, scores in [0,100]

I views: all possible combinations of 2 and 3 attributes

I uncertain data: replace each score with a score range
(Gaussian distribution, σ ∈ {5, 10})

Test: 100 randomly-generated queries of 5 attributes



Experiments: context-agnostic setting
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Experiments: context-agnostic setting

Sel. + Dist. Rel. running-time Min. precision |P|

10 50 100 10 50 100 10 50 100

avg + uni 0.576 0.676 0.712 0.57 0.69 0.72 10 36 64
def + uni 0.350 0.446 0.544 0.57 0.69 0.72 10 36 64
max + uni 0.296 0.395 0.446 0.57 0.69 0.72 10 36 64

avg + exp 0.732 1.128 1.287 0.60 0.63 0.64 10 46 86
def + exp 0.531 0.771 1.003 0.60 0.63 0.64 10 46 86
max + exp 0.456 0.684 0.827 0.60 0.63 0.64 10 46 86

Table : Comparison between SR-TA and TA (exact scores), for uniform
and exponential distributions, for std 5.
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