Context-Aware Top-*k* Processing Using Views Silviu Maniu, Bogdan Cautis

University of Hong Kong & Univ. Paris-Sud / INRIA Saclay

CIKM 2013

Location-aware top-k retrieval

Users search for specific types of restaurants near a given location.

Social-aware top-k retrieval

In social tagging applications (Flickr, Delicious, Twitter), users search for photos/pages/items having certain tags.

Outline

Context-aware top-k retrieval

Uncertainty in views

View-based top-k processing

Refinements

Experiments

Context-aware top-k retrieval

- ► Collection of objects \mathcal{O} , attributes \mathcal{T} (e.g., keywords, tags)
- ▶ For a given context parameter C, objects o are associated to certain attributes t, by a function $score(o, t \mid C)$
 - extended to a set of attributes by monotone aggregation (e.g., sum).

$$\textit{score}(\textit{o}, \{\textit{t}_1, \ldots, \textit{t}_\textit{n}\} \mid \mathcal{C}) = \sum (\textit{score}(\textit{o}, \textit{t}_1 \mid \mathcal{C}), \ldots, \textit{score}(\textit{o}, \textit{t}_\textit{n} \mid \mathcal{C}))$$

Problem (context-aware top-k retrieval)

Given a query $Q = \{t_1, \ldots, t_n\} \subset \mathcal{T}$ and a context \mathcal{C} , retrieve the k objects $o \in \mathcal{O}$ having the highest values $score(o, Q \mid \mathcal{C})$.

[Amer-Yahia et al. VLDB'08, Shenkel et al. SIGIR'08, Maniu et al. CIKM'13]

Top-k retrieval in social tagging applications:

- Collaborative tagging environment: objects (e.g., photos), users, attributes (tags), a relation
 Tagged(object, user, tag)
- Social network: associates to pairs of users a social proximity value (σ) (e.g., [0,1] similarity in tagging)
- ► Social score model: a seeker-dependent score (for seeker s)

$$\mathit{score}(\mathit{o},\mathit{t}\mid \mathit{s}) = \sum_{\mathit{u} \in \{\mathit{v} \mid \mathit{Tagged}(\mathit{o},\mathit{u},\mathit{t})\}} \sigma(\mathit{s},\mathit{u})$$

Problem (social-aware top-k retrieval)

Given a query $Q = \{t_1, ..., t_n\}$ and a context (e.g., the seeker s), retrieve the k objects having the highest scores.

Social-aware top-k retrieval

Alice wants the top two documents for the query $\{news, site\}$ \rightsquigarrow a social-aware result: **D4**, **D2**

ne	ews	Si	ite
doc	tf	doc	tf
D4	1.11	D3	1.20
D2	0.81	D4	0.81
D5	0.60	D2	0.81
D3	0.30	D5	0.60
D1	0.30	D1	0.00

user	prox.
Bob	0.90
Danny	0.81
Charlie	0.60
Ed	0.30

Location-aware top-k retrieval

[Cong et al. VLDB'09, Christoforaki et al. CIKM'11, Cao et al. SIGMOD'11]

Top-k retrieval in spatial applications:

- ▶ Objects (e.g., documents) with attributes and geo-location.
- ► Spatial score model: combine textual and location relevance:

$$\textit{score}(\textit{o},\textit{t} \mid \textit{loc},\alpha) = \alpha \times \textit{tf}(\textit{t},\textit{o}) + (1-\alpha) \times \textit{dist}(\textit{o},\textit{loc})$$

Problem (location-aware top-k retrieval)

Given a query $Q = \{t_1, ..., t_n\}$, a context (e.g., location and α), retrieve the k objects having the highest scores.

Location-aware top-k retrieval

Top-2 query $\mathbf{Q}{=}\{t1{,}t2\},~\alpha=0.7~\text{at}~\textbf{L0}:\textbf{o4:0.92}~\text{and}~\textbf{o2:0.85}$

Query answering using views

Context-aware retrieval is inherently difficult: joint exploration of the textual and "contextual" (e.g., spatial or social) space.

Our goal: improve efficiency by materialization, exploiting results of previous searches (views).

Each view has a context: its usefulness is proportional to distance w.r.t. the new context → score uncertainty, approximate top-k results.

Outline

Context-aware top-k retrieval

Uncertainty in views

View-based top-k processing

Refinements

Experiments

Context transposition

Focus on two applications: location-aware search, social-aware search

The context C^V of a view V is a pair $(C^V.I, C^V.\alpha)$:

- ▶ location $C^V.I$: geo-coordinates or seeker ld in a social network
- ▶ contextual parameter $C^V.\alpha$: the weight of the context in scores

Context transposition

Focus on two applications: location-aware search, social-aware search

The context C^V of a view V is a pair $(C^V.I, C^V.\alpha)$:

- ▶ location $C^V.I$: geo-coordinates or seeker ld in a social network
- contextual parameter $\mathcal{C}^V.\alpha$: the weight of the context in scores

Transposition: adapt results for $(\mathcal{C}^V.I,\mathcal{C}^V.\alpha)$ to a new context $(\mathcal{C}.I,\mathcal{C}.\alpha)$

Top-2 query $\mathbf{Q} = \{t1,t2\}$ at location $\mathbf{L0}$

VI	.=(L1,{\1,\2})	•	/2=(L2,{L1})	v	/3=(L2,{	LZ},
0	SC	0	SC	0	sc	
о5	1.062	o2	0.946	o4	0.962	
о4	1.029	о3	0.575	о5	0.450	
o2	1.000	о5	0.450	o1	0.437	
		о4	0.262	o2	0.246	

Top-2 query $\mathbf{Q} = \{t1,t2\}$ at location $\mathbf{L0}$

V	$l=(L1,\{t1,t2\})$	V	$(12 = (L2, \{t1\}))$	V	′ 3 =(L2,{t	:2},
0	SC	0	SC	0	SC	
о5	1.062	o2	0.946	o4	0.962	
о4	1.029	о3	0.575	о5	0.450	
o2	1.000	о5	0.450	o1	0.437	
		o4	0.262	o2	0.246	

distance of o4 to Q unknown, but within [0.987, 1.037] interval

V	$l=(L1,\{t1,t2\})$	١.	$(12 = (L2, \{t1\})$	V	' 3 =(L2,{t	:2})
0	SC	0	SC	0	SC	
о5	1.062	o2	0.946	o4	0.962	
о4	1.029	о3	0.575	о5	0.450	
o2	1.000	о5	0.450	o1	0.437	
		о4	0.262	o2	0.246	

distance of o4 to Q unknown, but within [0.987, 1.037] interval

V	$l=(L1,\{t1,t2\})$	V	$(12 = (L2, \{t1\}))$	V	′ 3 =(L2,{t	:2},
0	SC	0	SC	0	SC	
о5	1.062	o2	0.946	o4	0.962	
о4	1.029	о3	0.575	о5	0.450	
o2	1.000	о5	0.450	o1	0.437	
		o4	0.262	o2	0.246	

distance of o4 to Q unknown, but within [0.987, 1.037] interval

Reasoning based on shortest paths, i.e., the optimal is through:

C.1

•

▶ a path that has as prefix the $\mathcal{C}.I \leadsto \mathcal{C}^V.I$ path - worstscore

Uncertain views

- ► For an input query *Q*, after context transposition (if necessary),
- ▶ A view *V* is composed of:
 - 1. a definition def(V): a pair query-context (Q^V, C^V)
 - 2. an answer set ans(V): triples (o_i, wsc_i, bsc_i) , indicating that object o_i has a score in the range $[wsc_i, bsc_i]$

Outline

Context-aware top-k retrieval

Uncertainty in views

View-based top-k processing

Refinements

Experiments

Using the views for one object's bounds

Given a view set \mathcal{V} and a query Q sharing the same context, compute the tightest worst-score / best-score bounds for some object o.

Via a linear program:

$$\begin{aligned} & \max \sum_{\mathbf{t}_i \in Q} \mathbf{sc}(\mathbf{o}, \mathbf{t_i} \mid \mathcal{C}) & & & & & & & \\ & \min \sum_{\mathbf{t}_i \in Q} \mathbf{sc}(\mathbf{o}, \mathbf{t_i} \mid \mathcal{C}) & & & & & & \\ & wsc \leq \sum_{\mathbf{t}_j \in Q^V} \mathbf{sc}(\mathbf{o}, \mathbf{t_j} \mid \mathcal{C}), \ \forall V \in \mathcal{V} \ s.t. \ (o, wsc, bsc) \in ans(V) & & & \\ & \sum_{t_j \in Q^V} \mathbf{sc}(\mathbf{o}, \mathbf{t_j} \mid \mathcal{C}) \leq bsc, \ \forall V \in \mathcal{V} \ s.t. \ (o, wsc, bsc) \in ans(V) & & \\ & \mathbf{sc}(\mathbf{o}, \mathbf{t_l} \mid \mathcal{C}) \geq 0, \forall t_l \in \mathcal{T} & & & & \end{aligned}$$

Before context transposition

Top-2 query $\mathbf{Q} = \{t1,t2\}$ at location $\mathbf{L0}$

After context transposition

How can we use the views to compute the top-2 for Q?

Using views for one object: example

Top-*k* using views with uncertain scores:

LP formulation to compute tightest bounds - e.g., for o5:

Using views for one object: example

Top-k using views with uncertain scores:

LP formulation to compute tightest bounds - e.g., for o5:

 \rightarrow score interval for **o5** between [1.000,1.050]

Our approach for top-k using views

Adapt the TA/NRA early-termination algorithms to the case of uncertain scores \leadsto the ${\rm SR\text{-}TA}$ and ${\rm SR\text{-}NRA}$ algorithms.

Our approach for top-k using views

Adapt the TA/NRA early-termination algorithms to the case of uncertain scores \leadsto the SR-TA and SR-NRA algorithms.

Plug the LPs in:

- the computation of worst-score/ best-score bounds,
- the computation of the termination threshold.

In some cases, the exact top-k cannot be extracted with full confidence.

In our running example, at termination:

Candidates					
WSC	bsc				
1.174	1.134				
1.042	1.105				
1.000	1.050				
0.500	0.971				
0	0.849				
	wsc 1.174 1.042 1.000 0.500				

In some cases, the exact top-k cannot be extracted with full confidence.

In our running example, at termination:

Candidates				
obj	wsc	bsc		
о4	1.174	1.134		
o2	1.042	1.105		
о5	1.000	1.050		
о3	0.500	0.971		
*	0	0.849		

• one object guaranteed in the top-2: $G = \{o4\}$

In some cases, the exact top-k cannot be extracted with full confidence.

In our running example, at termination:

Candidates					
obj	wsc	bsc			
о4	1.174	1.134			
o2	1.042	1.105			
о5	1.000	1.050			

0.500

0.971

о3

- one object guaranteed in the top-2: $G = \{o4\}$
- ▶ objects that may be in the top-2: $P = \{o2, o5\}$

In some cases, the exact top-k cannot be extracted with full confidence.

In our running example, at termination:

Candidates					
obj	wsc	bsc			
о4	1.174	1.134			
o2	1.042	1.105			
о5	1.000	1.050			

0.500

0.971

03

- lacktriangle one object guaranteed in the top-2: $G=\{o4\}$
- ▶ objects that may be in the top-2: $P = \{o2, o5\}$
- ▶ all other objects cannot be in the top-2

Top-k using uncertain views

Problem (Top-k retrieval using uncertain views)

Given a query $Q = \{t_1, ..., t_n\} \subset \mathcal{T}$ and a context \mathcal{C} , given a set of views \mathcal{V} , retrieve from \mathcal{V} the most informative answer (G, P), with

- ▶ $G \subset \mathcal{O}$ consisting of all guaranteed objects; i.e., in any data instance, they are in the top-k for Q and C.
- ▶ and $P \subset \mathcal{O}$ consisting of all possible objects outside G; i.e., there exist data instances where these are in the top-k for Q and C.

Outline

Context-aware top-k retrieval

Uncertainty in views

View-based top-k processing

Refinements

Experiments

Beyond the most informative top-k answer

Estimating the most likely top-k answer:

Beyond the most informative top-k answer

Estimating the most likely top-k answer:

In the example: $P = \{o2 \in [1.042, 1.105], o5 \in [1.000, 1.050]\}.$

Beyond the most informative top-k answer

Estimating the most likely top-k answer:

In the example:
$$P = \{o2 \in [1.042, 1.105], o5 \in [1.000, 1.050]\}.$$

If we assume a uniform distribution in the intervals:

$$P[o2 \ge o5] = 0.989$$

$$P[o5 > o2] = 0.011$$

Beyond the most informative top-k answer

Estimating the most likely top-k answer:

In the example: $P = \{o2 \in [1.042, 1.105], o5 \in [1.000, 1.050]\}.$

If we assume a uniform distribution in the intervals:

$$P[o2 \ge o5] = 0.989$$

$$P[o5 > o2] = 0.011$$

 \implies the most likely top-k is $G \cup \{o2\}$: $\mathbf{P}[\{o4, o2\}] = 0.989$

Beyond the most informative top-k answer

Estimating the most likely top-k answer:

In the example: $P = \{o2 \in [1.042, 1.105], o5 \in [1.000, 1.050]\}.$

If we assume a uniform distribution in the intervals:

$$P[o2 \ge o5] = 0.989$$

 $P[o5 > o2] = 0.011$

$$\implies$$
 the most likely top- k is $G \cup \{o2\}$: $\mathbf{P}[\{o4, o2\}] = 0.989$

Ways to evaluate:

- naive enumeration: good if |P| is small,
- ▶ sampling or probabilistic top-k [Soliman et. al, VLDBJ10]

View selection

The P and G sets might be too expensive to compute, if the view set is very large, even using early-termination algorithms.

Solution: select few most relevant views, i.e., a subset $\tilde{\mathcal{V}} \subset \mathcal{V}$

based on view definition, result statistics (see paper)

View selection

The P and G sets might be too expensive to compute, if the view set is very large, even using early-termination algorithms.

Solution: select few most relevant views, i.e., a subset $\tilde{\mathcal{V}} \subset \mathcal{V}$

- based on view definition, result statistics (see paper)
- ▶ trade-off between size of $\tilde{\mathcal{V}}$ and "quality" of the resulting (\tilde{G}, \tilde{P}) pair, in terms of distance to (G, P):

$$\Delta = \begin{pmatrix} |\tilde{P}| \\ k - |\tilde{G}| \end{pmatrix} - \begin{pmatrix} |P| \\ k - |G| \end{pmatrix}$$

View selection

The P and G sets might be too expensive to compute, if the view set is very large, even using early-termination algorithms.

Solution: select few most relevant views, i.e., a subset $\tilde{\mathcal{V}} \subset \mathcal{V}$

- based on view definition, result statistics (see paper)
- ▶ trade-off between size of $\tilde{\mathcal{V}}$ and "quality" of the resulting (\tilde{G}, \tilde{P}) pair, in terms of distance to (G, P):

$$\Delta = \begin{pmatrix} |\tilde{P}| \\ k - |\tilde{G}| \end{pmatrix} - \begin{pmatrix} |P| \\ k - |G| \end{pmatrix}$$

Final refinement: compute tightest bounds only for objects in $\tilde{G} \cup \tilde{P}$

Formal results

Instance optimality: For $A_i \in A$ and $A_2 \in A$, write $A_1 \leq A_1$ iff for all sets of views \mathcal{V} and all data instance \mathbf{D} , A_2 costs at least as much as A_1 .

Lemma

 $\mathrm{SR\text{-}NRA}^{\mathit{sel}} \not \preceq \mathrm{SR\text{-}NRA}^{\mathit{nosel}} \not \preceq \mathrm{SR\text{-}NRA}^{\mathit{sel}}.$ $\mathrm{SR\text{-}TA}^{\mathit{sel}} \not \preceq \mathrm{SR\text{-}TA}^{\mathit{nosel}} \not \preceq \mathrm{SR\text{-}TA}^{\mathit{sel}}.$

Theorem

When we restrict the class of views to pairwise disjoint views:

- ► SR-TA^{sel} is instance optimal over **A**.
- ▶ SR-NRA^{sel} is instance optimal over **A** (when only sequential accesses are allowed).

Putting it all together

ProcessQueryUsingViews(V, Q, C, k)

Require: query Q, views \mathcal{V} , context \mathcal{C} , top k required

- 1: for $V \in \mathcal{V}$ do
- 2: transpose the context \mathcal{C}^V to \mathcal{C}
- 3: end for
- 4: $ilde{\mathcal{V}} \leftarrow ext{view selection on } \mathcal{V} ext{ for } Q$
- 5: $(\tilde{G}, \tilde{P}) \leftarrow \text{SR-TA}(Q, k, \tilde{V})$ or $\text{SR-NRA}(Q, k, \tilde{V})$
- 6: $(G, P) \leftarrow \text{Refine}(\tilde{G}, \tilde{P})$
- 7: E = ESTIMATE(P, k |G|)
- 8: **return** $G \cup E$

Outline

Context-aware top-k retrieval

Uncertainty in views

View-based top-k processing

Refinements

Experiments

Experiments: location-aware search

Figure : Performance and precision of $SR-TA^{sel}$ versus exact early-termination algorithm (IR-TREE) (grey=top-10, white=top-20).

- ▶ PolyBot dataset: 6,115,264 objects and 1,876 attributes
- ► Views: 20 views of 2-term queries at 5 random locations, various list sizes
- ▶ Test: 10 queries at 5 locations and $\alpha \in \{0.7, 0.8, 0.9\}$

Experiments: social-aware search

Figure : Social-aware search: performance and precision of $SR-TA^{sel}$ versus CONTEXTMERGE (grey=top-10, white=top-20).

- ▶ Delicious data: 80000 users, 595811 objects, 198080 attributes
- Social network: 3 similarity networks (tag, item, item-tag)
- ▶ Views: 10 users each having 40 views of 1 and 2 tag queries
- ▶ Test: 10 3-tag queries for 5 seekers and $\alpha \in \{0, 0.1, 0.2, 0.3\}$

Summary

We formalize and study the problem of context-aware top-k processing based on (possibly uncertain) views.

- Context transposition, exemplified in two application scenarios
- New semantics based on views: most informative result
- Sound and complete adaptation of TA / NRA
- Probabilistic refinement: most likely top-k result
- ► Further efficiency: view selection
 - instance optimality under restrictions

Thank you.

Threshold algorithms: SR-TA

Adaptation of TA algorithm[Fagin01], SR-NRA similar.

```
Require: query Q, size k, views \mathcal{V} (after transposition)
  1: D = \emptyset
  2: loop
  3:
         for each view V \in \mathcal{V} in turn do
  4:
             (o_i, wsc_i, bsc_i) \leftarrow \text{next tuple by sequential access in } V
  5:
             read by random-accesses all other lists V' \in \mathcal{V} for tuples (o_i, wsc_i, bsc_i) s.t.
             o_i = o_i
 6:
             wsc \leftarrow \text{solution to the MP in Eq. (1) for } o_i
 7:
             bsc \leftarrow solution to the MP in Eq. (2) for <math>o_i
 8:
             add the tuple (o_i, wsc, bsc) to D
 9.
         end for
10:
         \tau \leftarrow maximal possible score of objects not encountered
11:
      wsc_t \leftarrow lower-bound score of kth candidate in D
12:
         if \tau < wsc_t then
13:
             break
14:
         end if
15: end loop
16: (G, P)=Partition(D, k)
17: return (G, P)
```

Threshold algorithms: PARTITION(D, k)

```
Require: candidate list D, parameter k
 1: G \leftarrow \emptyset the objects guaranteed to be in the top-k
 2: P \leftarrow \emptyset the objects that might enter the top-k
 3: for each tuple (o, bsc, wsc) \in D, o \neq * do
       x \leftarrow |\{(o', bsc', wsc') \in D \mid o' \neq o, bsc' > wsc\}|
      wsc_t \leftarrow lower-bound score of kth candidate in D
 5:
 6: if x \le k and for (*, wsc_*, bsc_*) \in D, bsc_* \le wsc then
          add o to G
 7:
 8: else if bsc > wsc_t then
 9.
          add o to P
       end if
10:
11: end for
12: return G, P
```

Experiments: context-agnostic setting

Input data:

- ▶ synthetic: 100,000 objects and 10 attributes, scores in [0,100]
- views: all possible combinations of 2 and 3 attributes
- uncertain data: replace each score with a score range (Gaussian distribution, $\sigma \in \{5, 10\}$)

Test: 100 randomly-generated queries of 5 attributes

Experiments: context-agnostic setting

Experiments: context-agnostic setting

Sel. + Dist.	Rel.	Rel. running-time			Min. precision			<i>P</i>		
	10	50	100	10	50	100	10	50	100	
avg + uni	0.576	0.676	0.712	0.57	0.69	0.72	10	36	64	
def + uni	0.350	0.446	0.544	0.57	0.69	0.72	10	36	64	
max + uni	0.296	0.395	0.446	0.57	0.69	0.72	10	36	64	
$\begin{array}{c} {\tt avg} + {\tt exp} \\ {\tt def} + {\tt exp} \\ {\tt max} + {\tt exp} \end{array}$	0.732	1.128	1.287	0.60	0.63	0.64	10	46	86	
	0.531	0.771	1.003	0.60	0.63	0.64	10	46	86	
	0.456	0.684	0.827	0.60	0.63	0.64	10	46	86	

Table : Comparison between SR-TA and TA (exact scores), for uniform and exponential distributions, for std 5.