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Abstract

In this paper, we revisit the group recommendation problem,
by taking into consideration the information diffusion in a
social network, as one of the main criteria that must be max-
imised. While the well-known influence maximization prob-
lem has the objective to select k users (spread seeds) from
a social network, so that a piece of information can spread
to the largest possible number of people in the network, in
our setting the seeds are known (given as a group), and we
must decide which k items (pieces of information) should be
recommended to them. Therefore, the recommended items
should at the same time be the best match for that group’s
preferences, and have the potential to spread as much as pos-
sible in an underlying diffusion network, to which the group
members (the seeds) belong. This problem is directly moti-
vated by group recommendation scenarios where social net-
working is an inherent dimension that must be taken into ac-
count when assessing the potential impact of a certain rec-
ommendation. We present the model and formulate the prob-
lem of influence-aware group recommendation as a multiple
objective optimization problem. We then describe a greedy
approach for this problem and we design an optimisation ap-
proach, by adapting the top-k algorithms NRA and TA. We
evaluate all these methods experimentally, in three different
recommendation scenarios, for movie, micro-blog and book
recommendations, based on real-world datasets from Flixster,
Twitter, and Douban respectively. Unsurprisingly, with the in-
troduction of information diffusion as an optimization crite-
rion for group recommendation, the recommendation prob-
lem becomes more complex. However, we show that our al-
gorithms enable spread efficiency without loss of recommen-
dation precision, under reasonable latency.

Introduction
The explosive growth of e-commerce has led to the devel-
opment of recommender systems, benefiting from a rich
research literature in recent years (Aggarwal 2016; Ricci
2018). By mining the binary relationships between users and
items (such as music, books, movies, news, tourist attrac-
tions, etc.), they can find items that users might be interested
in from large amounts of data, generating personalized rec-
ommendations. Recommendation systems are nowadays an
ubiquitous concept in Web applications, and have been ap-
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plied successfully in many areas such as e-commerce, infor-
mation retrieval, Web advertising, or social networking.

At the same time, with the development of social net-
works, a huge amount of information spreads online, gen-
erating significant research interest on the analysis of influ-
ence and information propagation, under the generic scope
of influence estimation (Saito, Nakano, and Kimura 2008;
Gomez-Rodriguez, Leskovec, and Krause 2012; Huang
et al. 2019) and influence (spread) maximisation (Li et al.
2018; Kempe, Kleinberg, and Tardos 2003). The poten-
tial applications of influence maximization in social net-
works are quite diverse, including recommendation sys-
tems (Leskovec, Singh, and Kleinberg 2006), informa-
tion diffusion (Matsubara et al. 2012), and viral market-
ing(Goldenberg, Libai, and Muller 2001; Jurvetson 2000).
For example, a company may want to promote its new prod-
ucts, with a limited budget. It may hope that a small number
of people can be selected to try the product for free. When
the selected seed nodes are satisfied (“activated”), they will
recommend (spread) the products to their families, friends,
or colleagues, through the word-of-mount mechanisms em-
bedded in social networking applications. This kind of sce-
nario translates formally into the problem of finding the ini-
tial spread seeds (users) that could eventually influence the
largest number of people within the diffusion network.

Among the popular recommendation scenarios, in recent
years we have also seen the emergence of group recom-
mender systems (Boratto and Felfernig 2018), where the
items to be retrieved have as target not one individual but a
group thereof. For example, such systems may recommend
TV shows, movies, restaurants, music, trips, etc, to groups of
friends that get together and require suggestions for a collec-
tive goal. In such contexts, as user preferences may be quite
diverse even within a group (or even antagonistic), ideal rec-
ommendations are those that strike a balance between two
orthogonal objectives, namely the overall benefit (the aggre-
gated utility, a.k.a., the group’s social welfare) and fairness
(limiting as much as possible individual dissatisfaction).

In this context, it is therefore natural to revisit the group
recommendation problem by assuming that the recom-
mended information can also be spread in an underlying net-
work, by word-of-mouth. More precisely, we consider in this
paper a setting where the group members are assumed to be
interconnected and are also members of a much larger so-
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cial network, and we account for the effects of information
diffusion in the group recommendation decision. Consider-
ing for example the movie recommendation problem in an
online social network such as Facebook, when the target is
a group of friends, it is reasonable to take into account the
“bigger picture” and the potential implications of a recom-
mendation not only for the group itself, but also for the so-
cial circles of the group’s members and beyond. Therefore, a
good movie recommendation will not only satisfy the group
being recommended, but also have the potential to spread
further, from that group to other members of the social net-
work, in the end leading to a much wider audience.

The main contributions of this paper are the following:
• We present a model that encompasses group recom-

mendation and topic-aware influence, and we formulate
influence-aware group recommendation as a multiple ob-
jective optimization problem.

• We describe a generic greedy algorithm, based on the
model, to select the top-k items to be recommended to
a given group.

• We consider optimizations over the generic algorithm, by
adapting top-k algorithms such as NRA and TA (Fagin,
Lotem, and Naor 2003), in order to improve the running
time without loss of effectiveness.

• We evaluate our algorithms on three different recommen-
dation scenarios, for movie, micro-blog and book rec-
ommendations to groups, over real-world datasets from
Flixster, Twitter, Douban respectively, comparing them
to several baseline methods using state-of-the-art ideas.

Related Work
There is a recent, extremely rich, and diverse research lit-
erature on recommender systems, motivated also by many
industrial initiatives such as the Netflix prize challenge (Bell
and Koren 2007). Generally, recommender systems can be
divided into two main categories: personal recommender
system and group recommender systems. For the former cat-
egory, we refer the reader to general surveys such as (Ricci,
Rokach, and Shapira 2011; Aggarwal 2016; Ricci 2018).

Group recommendation decisions (Boratto and Felfernig
2018) are more complex because of the different preferences
between group members. Group members may perform dif-
ferent actions or have different views or preferences over to-
be-recommended items (Elliot, Timothy, and Robin 2017).
How to extract the common preferences of the group mem-
bers and reduce the group members’ conflicts is therefore
a key aspect of the problem. Obviously, there is no perfect,
one-size-fits-all group recommendation approach and sys-
tem, for all application scenarios, and one needs to adapt to
the recommendation objective.

In the literature on group recommendation (Amer-Yahia
et al. 2009), there are generally two categories of methods,
based on either preference aggregation or score aggregation.
The former makes recommendations based on the aggre-
gated profile from all group members’ profiles (McCarthy
and Anagnost 1998; Yu et al. 2006). The latter evaluate the
score of recommendations for each group member respec-
tively, then aggregate their recommendation results for the

group (Baltrunas, Makcinskas, and Ricci 2010; Jameson and
Smyth 2007). In order to make the recommendation result
as adequate as possible for all group members, one needs
to thoroughly consider the interactions of group members
(Said, Berkovsky, and De Luca 2011).

But for ephemeral groups (Quintarelli, Rabosio, and
Tanca 2016), who are constituted by people grouped to-
gether for the first time, the historical interactions may not
exist, and one can only consider the aggregation of the indi-
vidual preferences.

(O’connor et al. 2001) is one of the first research efforts on
group recommendation, which introduced the Polylens sys-
tem for movie recommendation to groups. In (Amer-Yahia
et al. 2009), the authors analyzed the desiderata of group
recommendation and proposed a formal semantics that ac-
counts for both item relevance to a group and disagreements
among group members. The works of (Ntoutsi et al. 2012;
Amer-Yahia et al. 2009) also introduced how to select items
that satisfy the group as a whole (social welfare). But unfair-
ness (w.r.t. to certain members of a group) may still exist: the
best recommendation satisfying most group members may
still be disliked strongly by some users, as pointed out in (Qi
et al. 2016). Towards fairness, some studies draw inspiration
from game theory and voting theory (Yuan, Cong, and Lin
2014; Jameson and Smyth 2007; Elliot, Timothy, and Robin
2017; Baltrunas, Makcinskas, and Ricci 2010). In (Xiao
et al. 2017), the authors consider balancing between the two
objectives of group recommendation, namely the overall so-
cial welfare and fairness (w.r.t. individual preferences). Our
work is based on the framework of fairness-aware group rec-
ommendation of (Xiao et al. 2017), and builds on it in order
to account for topic-aware information diffusion for recom-
mended items.

Among the research efforts that account for social net-
working aspects in group recommendation, we can mention
approaches based on the network communities, such as (Sa-
hebi and Cohen 2011), where the impact of similarity and
interaction among members is considered, combined with
collaborative filtering ideas, or on recommending semantic
tags based on social relations (such as (Zheng et al. 2010)).
In (Salehi-Abari and Boutilier 2015), the authors consider a
group recommendation model in which preferences are cor-
related among people whom are connected in a social net-
work, where preferences represent rankings over a set of op-
tions. Finally, there are some recent methods based on deep
learning (Hu et al. 2014; Yuan, Cong, and Lin 2014), exploit-
ing latent dependencies between user profiles and items.

There is also a rich literature on the analysis of influ-
ence and information propagation in social networks, un-
der the generic scope of influence estimation (Saito, Nakano,
and Kimura 2008; Gomez-Rodriguez, Leskovec, and Krause
2012; Huang et al. 2019) and influence (spread) maximisa-
tion (Li et al. 2018; Kempe, Kleinberg, and Tardos 2003).
The problem of influence maximization was first formulated
in (Kempe, Kleinberg, and Tardos 2003) as a discrete opti-
mization problem, and proven NP-hard problem under cer-
tain propagation models. Many research ideas and algorith-
mic solutions followed, in general focusing on approxima-
tions that have a reasonable trade-off between effectiveness
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and efficiency (Arora, Galhotra, and Ranu 2017). Among the
most common applications of information diffusion in social
networks we have recommender systems (Leskovec, Singh,
and Kleinberg 2006) and viral marketing(Goldenberg, Libai,
and Muller 2001; Jurvetson 2000).

What distinguishes our research from the majority of
state-of-the-art research works in group recommendation is
the fact that we integrate as a first-class objective the spread
of information: we must adapt the recommendation strategy
in order to also maximize the social impact of the recom-
mended items. In that regard, the research efforts that are
closest to our focus are (Christensen and Schiaffino 2014;
Yin et al. 2019), which propose approaches to generate rec-
ommendations for groups on the basis of social factors ex-
tracted from a social network, factors that determine the in-
group dynamics and the group’s overall satisfaction for rec-
ommended items. In particular, in the recent work of (Yin
et al. 2019), the underlying idea is that an ideal group rec-
ommender system should be able to accurately learn from
logs of item adoptions not only the preferences of individ-
uals, but also the preference aggregation strategy within a
group that may be formed in an ad-hoc manner; in a so-
cial networking context, this strategy should account for the
social influence of group members within the group. Then,
(Yin et al. 2019) relies on an attention mechanism in order to
learn each user’s potential influence within different groups.
Our research is orthogonal to these works, as we focus on the
implications of information diffusion and influence outside
the group, within the larger social network.

Preliminaries
We first formally define topic-aware influence maximization
and fairness-aware group recommendation. We then propose
our model for influence-aware group recommendation, by
combining these two ingredients.

Diffusion networks and influence maximization.
We model the social (diffusion) network as a graph
G = (V, E ,P), where V is a set of users, E contains all
edges connection the users and P is a probability function
on E , with the semantics that the information will be prop-
agated along an edge according to the probability of that
edge, as specified by P . Information spread (a.k.a. influence
spread or influence cascades) is therefore captured by a
stochastic process, following certain propagation models.

Influence maximization. In a diffusion network, starting
from an initial group of nodes G – the seed set – that rep-
resent the initially activated nodes before the influence pro-
cess is initiated, Spread(G) denotes the random variable de-
scribing the expected size of the spread initiated from G. The
problem of influence maximisation can be defined generi-
cally as follows: under a certain propagation model, select
a set of seed nodes G, of size at most k, such that the ex-
pected spread of influence cascades starting from G (or the
expected number of activated nodes) is maximized.

Independent Cascades diffusion model. We discuss next
the most well-known propagation model, Independent Cas-
cades (IC), which is the one we consider in our paper. We

refer the interested reader to (Kempe, Kleinberg, and Tardos
2015) for a broader discussion on diffusion models. IC is a
stochastic propagation model, in which each node of the so-
cial network can have two states: active and inactive. Active
nodes will activate each inactive neighbor node with a cer-
tain probability, as follows. In the initial state t = 0, only a
certain number of nodes from a seed set S are set to the ac-
tive state. At any time step t = i, all nodes that transitioned
from the inactive state to the active state at t = i − 1 will
have one chance to activate all their inactive neighbor nodes,
succeeding in doing so with the probability associated to the
respective outgoing links. When there are no nodes remain-
ing in the network with the ability to activate other nodes,
the propagation process ends. The spread corresponds to the
number of the activated nodes.

Topic-aware influence. As an extension to IC, we con-
sider the topic-aware model proposed initially in (Barbieri,
Bonchi, and Manco 2013), which takes into consideration
the topical description of the information being diffused.
More precisely, we will assume that each edge in the dif-
fusion graph is a diffusion medium for information pertain-
ing to a certain number d of topics: namely, (u, v) ∈ E
is associated with a topic spreading-weight vector pu,v =(
p1u,v, p

2
u,v, ..., p

d
u,v

)
, where pzu,v is the weight associated to

topic z, denoting the activation probability for user v if ac-
tivated by user u under topic z. pu,v is normalised to sum
up to 1. Then, given a topic distribution vector −→γ for the
information that is diffused, −→γ =

(
γ1, γ2, ..., γd

)
such that∑

1≤i≤d γ
i = 1, for each edge (u, v), the propagation prob-

ability along that edge w.r.t. the topic distribution −→γ is:

pu,v(
−→γ ) = ⟨pu,v,

−→γ ⟩ = p⊤
u,v
−→γ , 0 ≤ pu,v ≤ 1 (1)

It is this propagation probability that will be used in an IC
topic-aware diffusion process, for edge (u, v), as described
before. We denote now by Spread(G|−→γ ) the random vari-
able describing the expected size of the spread initiated from
G when −→γ is the description of the conveyed information.

Problem 1 (Topic-Aware Influence Maximization)
Given a topic-aware network G = (V, E) and a query Q =
(−→γ , k), find a seed set G∗ = argmaxG Spread(G|−→γ ),
where G ⊂ V , |G| = k.

Greedy algorithm and Monte Carlo simulations. As
the objective function in influence maximisation is mono-
tone and submodular (Kempe, Kleinberg, and Tardos 2015),
the general approach for finding an approximate solution
is based on the greedy algorithm, selecting at each step a
new seed node – the one having the largest marginal gain
on expected spread. Since computing the expected spread
is #P-hard (Kempe, Kleinberg, and Tardos 2015) – and
this is straightforwardly also the case for topic-aware ver-
sion Spread(G|−→γ ) (Barbieri, Bonchi, and Manco 2013) –
many research works on influence maximisation rely on ap-
proaches involving Monte-Carlo simulations, to obtain an
approximate influence spread efficiently at any given step in
the greedy algorithm for seed selection (see (Arora, Galho-
tra, and Ranu 2017) and the references therein). In short,
given a seed node, one can simulate r random cascades
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from it and average the number of influenced nodes, which
can lead to a provably tight approximation of spread from
that seed. For instance, when simulating a cascade in the IC
model, for a newly activated node u and an inactive outgoing
neighbour v, one needs to compare the activation probability
pu,v with a number generated uniformly at random in [0, 1]
(a coin toss), activating v if this random number is lower. In
the topic-aware setting, simulations are performed similarly,
with the difference that pu,v(−→γ ) is used for the edge (u, v),
when simulating the diffusion of −→γ over it.

Group recommendation with social welfare and fair-
ness. Following the most common dimensions of models
for group recommendation, we assume that users have ac-
cess – or are recommended – a set of items from a domain
of items I, and each user establishes a value of relevance for
each item, corresponding to their preferences.This pairwise
relevance can then be normalized as rel(u, i) ∈ [0, 1]. The
utility function Utility(u, I) – of user u with respect to a set
of items I ⊆ I – is the sum of normalized relevance scores
of users u for items i, i.e. rel(u, i) scores:

Utility(u, I) = min(1,
∑
i∈I

rel(u, i)) (2)

Then, for evaluating the overall utility of a group, one can
aggregate the individual utility values into a social welfare
score, and further consider fairness as an indicator for the
imbalance between the individual users’ utility values. More
precisely, when we have users belonging to a group G ⊂ V ,
we can aggregate the individual utility values, Utility(u, I)
from equation (2), to measure the extent of the social welfare
of the group G in relation to item set I , as follows:

SW(G, I) =
1

|G|
∑
u∈G

Utility(u, I). (3)

Complementary, a measure of fairness will assess how sat-
isfied are all the members of the group with the item selec-
tion I , as a function of all Utility(u, I) values. While there
are several alternative formulations for fairness, the common
aim is to minimize the utility gap between group members
(Amer-Yahia et al. 2009). In the following, we will adopt the
Least Misery formulation, defined as the minimal utility of
a user in the group, but our results can be easily adapted for
other fairness formulations:

FLM (G, I) = min
u∈G

(Utility(u1, I),Utility(u2, I), .., 1).

(4)
So the group’s fairness is directly tied to the minimal utility
a group member would get from the items I . Based on these
ingredients, we can now introduce the group recommenda-
tion problem, as considered recently in (Xiao et al. 2017):

Problem 2 (Group Recommendation) Given a user group
G and a set of items Ĩ ⊆ I up for recommendation, recom-
mend a set I ⊆ Ĩ of k items s.t. social welfare SW (G, I)
and fairness F (G, I) are maximized.

Influence-aware Group Recommendation
Based on the preliminaries of the previous section, we de-
scribe next the recommendation problem we consider. Re-
call that in group recommendation with fairness and social
welfare the objective is to select an item set I of a given size,
from a large number of items Ĩ , so that the group members
are “satisfied”. In topic-aware information propagation, the
objective is to select a set of users from the social network
who can influence the largest number of people in the net-
work. In our influence-aware group recommendation setting,
the goal is to combine these two perspectives, i.e., assuming
that the group members are part of a social network where
information propagates beyond the group’s social scope.

Associating topics to edges, users, and items. As ex-
plained before, our framework assumes that the diffusion
network and information being spread have a topical model,
with topics are derived from the items being diffused, as a
d-dimensional space, i.e. i ∈ Rd. We next describe how this
is extended to encompass users and item relevance.

Edges. Assuming that information spreading in the net-
work pertains to these d topics, recall that each edge (u, v) ∈
E has a topic spreading-weight vector

(
p1u,v, p

2
u,v, ..., p

d
u,v

)
,

where pzu,v is the weight on topic z.

Users. Similarly, for each user u ∈ V and topic z, rel(u, z)
expresses the propensity of an user u to influence neigh-
boring nodes and generate spread on a specific topic z in
which they are interested and have authority on. If u has a
spreading-weight pzu,v to his neighbor v ∈ C(u) on topic z,
it is reasonable to assume that his interest and authoritative-
ness on topic z must be higher than pzu,v . Therefore, in our
model, rel(u, z) can be determined as follows:

rel(u, z) ∈ [max{pzu,v, ∀v ∈ C(u)}, 1] (5)

and overall each user profile can be described by the rele-
vance vector rel(u) = (rel(u, 1), . . . rel(u, d)) .

Items. Generally speaking, the essence of item i is a top-
ical distribution vector −→γi =

(
γ1
i , γ

2
i , ..., γ

d
i

)
in which γz

i
denotes the probability that item i belongs to topic z, such
that

∑d
z=1 γ

z
i = 1. The topical distribution −→γI of a set of

items I is simply obtained through an aggregation over each
topic and upper bounded by 1. With rel(u, z) and −→γI , we
can determine the relevance of candidate items I to each
user rel(u, I), to bring the reasoning from a topic-wise one
to a set-of-items-wise one, by the scalar product between
the d-dimensional vectors rel(u) and −→γI . We can then cor-
respondingly generalise the Utility, SW , and F functions
that are common in group recommendation models.

Problem 3 (Influence-Aware Group Recommendation)
Given a social network G = (V, E ,P) over which a
topic-aware influence model is defined, given a group of
users G ⊆ V and a set of items Ĩ ⊆ I , with each item i ∈ Ĩ
represented as a topical distribution −→γi =

(
γ1
i , γ

2
i , ..., γ

d
i

)
in which γz

i denotes the probability that i belongs to topic
z, select and recommend to G a set I ⊆ Ĩ of k items, with
overall (set-wise) topical distribution−→γI such that the social
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Algorithm 1 Greedy Influence-Aware Group Recommendation

Require: Network G = (V, E); group G ⊂ V ; items Ĩ; bud-
get k; scalarization parameters α and β.

1: Initialize I = ∅
2: while |I| ≤ k do
3: I := I ∪ argmaxj∈Ĩ\I [α · SW (G, I ∪

{j}) + β · FLM (G, I ∪ {j}) + (1 − α − β) ·
Spread(G|−→γ I∪{j})]

4: end while;
5: return I

welfare SW (G, I), fairness F (G, I), and topic-aware
spread Spread(G|−→γI) are maximized.

Note that an essential building block for evaluating a
topic-aware influence maximization is to compute the topic-
aware influence spread of the topics induced by the item set
I, Spread(G|−→γI). The problem we study is therefore “re-
verting” the classic influence maximisation perspective, in
the sense that, instead of looking for a set of spread seeds
from which to diffuse a given piece of information, we are
looking for the right piece of information to be diffused by
a given set of spread seeds (the group); we focus on what is
diffused (items) rather that from whom the diffusion process
is initiated. The items recommended to the group and that
will be spread from it should be consensual (a good match)
to the group, so that the process can be seen as successful.

Finally, with the topic-aware network G(E ,V,P), we can
compute the expected spread within G for a set of items I ,
from a group G, namely Spread(G|−→γI), by MC simulations.

Greedy Algorithm
The particular multi-objective optimization we consider in
this paper is clearly NP-hard, since we bring in an orthogo-
nal objective with respect to the ones considered initially in
(Xiao et al. 2017), namely in our problem we want to maxi-
mize jointly social welfare SW (G, I), fairness FLM (G, I),
and influence spread Spread(G|−→γI). In practice, one ap-
proximate approach for solving such a problem is based on
scalarization (Eichfelder 2009), which allows us to compute
a solution that is Pareto-optimal (in other words, no one di-
mension “wins” out), based on a convex sum with weights
assigned to each objective. Under this approach, the problem
becomes one of maximizing the following objective:

α · SW (G, I) + β · FLM (G, I)+

+(1− α− β) · Spread(G|−→γI)
for G ⊂ V , Ĩ, I ∈ Ĩ , |I| = k, 0 < α, β, α+ β < 1 (6)

This program can be solved approximately by a greedy ap-
proach, selecting at each step the item having the highest
marginal potential, i.e., achieving the highest combination
of fairness, social welfare, and influence when added to the
current solution. The flow of this greedy algorithm is given
in Alg. 1. Note that, when estimating the spread for a set
of items, we “bundle” them into one aggregated item to be
spread, by averaging the composing items over each topic.

Algorithm 2 Compute user-item relevance

Require: Given user u ∈ G; set of targeted items I ∪ {j};
topic-unit items: γj , for 1 ≤ j ≤ d

Ensure: rel(u, I ∪ {j})
1: for j ← 1 to d do
2: compute (or retrieve if already computed) rel(u, γj)
3: end for
4: return rel(u, I ∪ {j}) = (I ∪ {j}) ·

(rel(u, γ1), . . . , rel(u, γd))⊤

The complexity of the algorithm depends on the one of
each dimension in the scalarization program. For d top-
ics, the social welfare and fairness computations each take
O(d × |I| × |V|). The spread computation depends on R
Monte-Carlo sampling rounds shown in the preliminaries,
each taking linear time in the graph and the dimensionality,
soO(d×R×|E|); this is repeated k times. Overall, the com-
plexity is therefore O (d× |I| × |V|+ k × (d×R× |E|)).

Exploiting item similarity. The model and algorithm de-
scribed up to this point represent a first solution for the prob-
lem of diffusion-aware group recommendation, and we de-
tail experimental results for it in the experiments section.

At the core of our greedy algorithm (Algorithm 1) is the
correlation rel(u, I ∪{j}) between each user in G and each
potential new partial solution (a subset of Ĩ), in our case each
such partial solution I∪{j} being described by a topical dis-
tribution. The naive approach to computing these relevance
scores requires us to look at every pair of items and users,
for each step, and to recompute the relevance scores, wel-
fare, and fairness. When we are dealing with large groups
and many items, this may incur a high cost at query time.
It is therefore important to optimise and make this recurrent
step less computationally intensive.

A first optimisation idea we employ here (Algorithm 2)
is the following : for a given user u ∈ G, we will only
compute the relevance of the d unit vectors of topical dis-
tribution. For all other items or sets thereof, we then com-
pute their relevance for u by applying a linear combination
of the unit vectors’ relevance. This optimisation can be eas-
ily “plugged” in Algorithm 1: both social welfare(denoted
as SW (G, I)) and fairness (denoted as F (G, I)) use the
overall utility for the group’s members, given the recom-
mendation I: Utility(u, I), ∀u ∈ G, ∀I . The utility func-
tion Utility(u, I) of user u ∈ G is a function of the rele-
vance of the individual recommended items rel(u, i), now
computed approximately based on the topic-unit items. This
optimisation only works for linearly aggregated utility func-
tions, such as the one in Equation (2).

Alternative for effectiveness. As we are studying a multi-
objective optimization, it is important to compare our meth-
ods with multi-objective optimization solutions that trade ef-
ficiency for effectiveness, providing what could be seen as
an almost golden standard. We consider the Multiplicative-
Weight-Updates (MWU) algorithm (Udwani 2018), which
focuses on the generic problem of multi-objective maxi-
mization of monotone submodular functions subject to car-
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Algorithm 3 MWU (Udwani 2018)

Require: δ, T = 2 lnm
δ2 , λ1

i = 1/m f̃i(.) = fi(.|S1)
Vi−Fi(S1)

;
1: while 1 ≤ t ≤ (T ) do
2: gt(.) =

∑m
i=1 λ

t
if̃i(); Xt = A(gt, k1)

3: mt
i = f̃i(X

t)− α; λt+1
i = λt

i(1− δmt
i)

4: end while
5: return x2 = 1

T

∑T
t=1 X

t

dinality constraints, which is precisely our setting.
In short, (Udwani 2018) uses a three-step algorithm,

whose aim is to find the best weights in a scalarization ap-
proach, but using slightly different functions. These steps,
achieving a randomized (1− 1/e)− ϵ approximation, are:

1. Finding an initial feasible vector – in our case, these
would be initial candidate recommendations.

2. Multiplicative Weight Updating (MWU), in which the
weights assigned to each dimension get updated depend-
ing on the variation of the benefit (Alg. 3)

3. The rounding stage: as the best vector found may contain
fractional values, we round it to the nearest topic vector.

In our MWU implementation, δ is a subtractive term in the
approximation guarantee, and λ is a parameter of the func-
tions. Step 1 is achieved by running our greedy algorithm,
giving the initial set of k items. In step 2, we notice that line
2 of MWU allows any optimization algorithm. Hence, we
simply plug-in our greedy algorithm using the scalarization
technique presented before. Evidently, this means the multi-
objective algorithm will always be significantly slower than
our approach; however, its potential to find better values for
α and β makes it an interesting alternative for comparing ef-
fectiveness. The parameters to be set manually are δ, in our
case is 0.2, and m (the number of functions) is 3.

MWU outputs an average from the best vectors found in
every step. In our case, taking a simple average would not
give us a real item. Instead, for step 3 (rounding), we com-
puted the nearest real item – in terms of d-dimensional eu-
clidean distances – to the averaged vector.

Top-k Algorithms
Our on-the-fly greedy recommendation algorithm requires
no precomputation and leads to highly relevant results for
any given group. However, its complexity and execution
time are too large for an online setting. Inspired by well-
known top-k algorithms, such as Threshold Algorithm (TA)
and No Random Access Algorithm (NRA) (Fagin, Lotem,
and Naor 2003), we consider next a setting where some of
the item-group relevance score ingredients are precomputed
and sorted, based on which recommendations at query time
can be rendered significantly faster. As we do not need to
compute the exact items’ scores, but mainly to select which
ones should be recommended for a given group, we first
adapt our model to meet the requirements of top-k algo-
rithms. We start with the observation that, given the mono-
tone submodularity of the objectives, we can rely on pre-
computed item-user relevance and spread scores. First, note

that social welfare (SW ) and fairness (F ) can be computed
by a linear combination of each individual score rel(u, i), as
defined in Section . In order to compute them at query time
more easily, for each user, we assume to make available a
sorted list of items by relevance score.

We also pre-compute for each user a list of per-item lower
and upper bound scores for individual spread of items. These
will be ordered by the upper bounds, and can obtained based
on Monte-Carlo simulations, as shown in (Zhou et al. 2015).

So, for a given query G, the computation starting point at
query time will be, for each user in G, two lists consisting of
the candidate items I ordered by rel scores and spread lower
and upper bound scores (denoted σ+(u|−→γi ) and σ−(u|−→γi )).

By design, the generic NRA and TA algorithms work by
accessing sorted lists of partial scores, from which the over-
all score can be obtained by a monotone function thereof.
In our case, these will correspond to a linear combination of
rel and spread scores, for all users inside the seed group G.
The pool of candidate items (denoted here as B) scored by
the linear combination of partial scores, is maintained sorted
by lower bound on the overall score; the item at some rank r
in B is denoted Br. A run stops when in B there are k can-
didate items whose lower bound is higher than the upper-
bound of all other items (including unseen ones) – this is
denoted as the early-termination condition.

Recall that social welfare and fairness are based on a lin-
ear combination of rel(u, i) scores, ∀u ∈ G, i ∈ I , as:

SW(G, i) =
1

|G|
∑
u∈G

rel(u, i). (7)

FLM (G, i) = min
u∈G
{rel(u, i)}. (8)

Similarly, based on the individual spread(u, i) score in-
tervals, ∀u ∈ G, i ∈ I , the group’s spread objective has
an upper-bound given by the sum of all users’ upper bound
scores, and a lower bound given by the maximal individual
lower bound on spread, as follows:

spread+(G, i) =
∑
u∈G

{σ+(u|−→γi )} (9)

spread−(G, i) = max
u∈G
{σ−(u|−→γi )} (10)

The NRA algorithm accesses sequentially all lists in par-
allel until the early termination condition is met (Alg. 4). TA
allows random accesses to fill in the scores (Alg. 5).

In both algorithms, for each item i retrieved by a sorted se-
quential access at some iteration, the overall score S(i) will
be combined from 2× |G| sorted lists of items (denoted L).
L includes for each user u ∈ |G| the list containing rel(u, i)
scores (for building SW and F) and the list of pairs of upper
/ lower bound spread scores (σ−(u|−→γi ), σ+(u|−→γi )).

More precisely, from L, we would obtain the final score
estimations in two parts, as follows. For the part using rel :

α× SW(G, i) + β × FLM (G, i) =

= α× 1

|G|
∑
u∈G

rel(u, i) + β ×min
u∈G
{rel(u, i)} (11)
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Algorithm 4 NRA-based recommendation algorithm
Require: result size k, 2× |G| lists L
Ensure: B has best k items ordered by lower bound score

1: while S−(Bk) < T and not at the end of the lists L do
2: for each j ∈ {1, . . . , 2× |G|} do
3: (i, pj(i))← getNext(Lj), head j ← pj(i)
4: if i not yet in B then
5: compute S−(i), S+(i), based on pj(i)
6: add {i, S−(i), S+(i)} to B
7: else
8: update S−(i), S+(i), based on pj(i)
9: end if

10: update S+(d) for all other items d in B and not yet
seen in Lj , based on the new value for head j

11: update S+(∗) and T
12: maintain B sorted by lower bound score (S−)
13: end for
14: end while
15: return B1, . . . Bk

and for the spread part, lower or upper bound:

(1− α− β)× spread+(G, i) =

= (1− α− β)×
∑
u∈G

{σ+(u|−→γi )} (12)

(1− α− β)× spread−(G, i) =

= (1− α− β)×max
u∈G
{σ−(u|−→γi )} (13)

We assume a sorted access function getNext(Lj) →
(i, pj(i)) which retrieves the item Id i of the next best item
in the list Lj and its partial score pj , which can be rel(u, i)
or the lower-upper bound pair on spread estimation.

As soon as we access a new item via a sequential access
in one of the lists, we can establish an overall score lower
bound S(i)−, as well as an overall score upper bound S(i)+.
The purpose of these bounds is to establish the early termi-
nation condition: as soon as the lower bound of the kth item
in the candidate list B is lower than the upper bound of all
other possible items outside the top-k, the algorithm stops.

In NRA, the overall score bounds are obtained as follows:

1. S−(i) uses 0 for all the lists Lj in which the item i has
not been encountered yet, and pj(i) for the other lists.

2. S+(i) uses head j for all lists Lj in which item i has not
been encountered yet, and pj(i) for the other lists. head j

denotes the current upper bound on the remaining scores
in list Lj (i.e., the value at the current head of list Lj).

It is convenient for the algorithmic construction to assume
that among the previously encountered items there exists a
virtual item ∗, representing all unseen items, whose corre-
sponding upper bound score S+(∗) is obtained by plugging
in the head j values for all list Lj – this, in other words, rep-
resents the hypothetical best score for any not yet encoun-
tered item. The termination condition is S−(Bk) < T , for

T = max
(
S+(∗),

{
S+(i)|i ∈ B \ {B1, . . . Bk}

})
(14)

Algorithm 5 TA-based recommendation algorithm
Require: result size k, 2× |G| lists L
Ensure: B has best k items ordered by lower bound score

1: while S−(Bk) < T and not at the end of the lists L do
2: for each j ∈ {1, . . . , 2× |G|} do
3: (i, pj(i))← getNext(Lj), head j ← pj(i)
4: if i not yet in B then
5: compute S−(i), S+(i), based on newly seen

pj(i) and scores pl(i) obtained by random ac-
cesses (lookup by i) in all other lists Ll, l ̸= j

6: end if
7: update S+(∗) and T
8: maintain B sorted by lower bound score (S−)
9: end for

10: end while
11: return B1, . . . Bk

Our NRA adaptation, which only uses sequential accesses
over the lists L, has the flow outlined in Alg. 4. The TA adap-
tation works in a similar manner to the NRA one, but has as
main difference the fact that it is also allowed random ac-
cesses: whenever a new item i is encountered when sequen-
tially accessing some list Lj , getting Lj(i), all other lists
Ll, l ̸= j, are accessed to obtain the actual scores Ll(i) as
well. So TA requires both a sequential and random (lookup
by item Id) access to lists. Its flow is outlined in Alg. 5.

As a final note here, our TA-based adaptation should be
preferred whenever random accesses to pre-computed re-
sults do not incur a high cost, for instance when stored in
a flash drive. Whenever randomly accessing data is signifi-
cantly more costly than sequentially accessing it, the NRA-
based adaptation should be preferred instead.

Experimental Evaluation
We conducted experiments to assess the performance of
our solutions (greedy and top-k algorithms), in scenarios of
movie, micro-blog, or book recommendation to groups. For
evaluation, we are interested in 4 main dimensions: overall
benefit (overall score following scalarization), recommenda-
tion precision (to be defined shortly), spread efficiency, and
also the execution time required to select and recommend
data items with different scalarization parameters.

As mentioned, the potentially-high execution time of the
greedy approach led us to design two alternative top-k meth-
ods, based on precomputed individual scores, by adapting
the TA/NRA algorithms. With respect to them, we also con-
ducted focused experiments on recommendation execution
time and the early-stopping capacity (number of accesses
that were performed by TA or NRA).

Movie recommendation in Flixster. We rely on a Flixster
dataset from (Jamali and Ester 2010). Flixster was a so-
cial movie platform allowing users to share movie ratings,
discover movies, and meet others with similar tastes. This
dataset has users links constituting a social network and
timestamped action logs of user’s movie ratings. We com-
pleted this dataset by crawling the IMDB API in order to
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Figure 1: Experimental results (benefit, precision) for 2-cores of 10 users, with confidence intervals (Flixstr, Twitter, Douban).

Figure 2: Experimental results (benefit, precision) for 15 users and density of 50 edges, with confidence intervals (Flixstr).
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Figure 3: Spread efficiency (2-cores, 10 users, Flixstr).

have the genres of movies. Each movie description includes
one or more categories out of 29 possible IMDB genres, ob-
taining a topical distribution vector

(
γ1
i , γ

2
i , ..., γ

d
i

)
whose

sum of values equals 1 after normalization. A necessary step
over this dataset was to complete it with influence probabil-
ity values among nodes. We followed here a simple logic,
assuming that common movies of connected nodes u and v
are good indicators for the social influence over link (u, v).

1. We removed any social link (u, v) with less than 5 com-
mon movies between u and v.

2. Then, for a link (u, v), v is influenced by u on common
movies m s.t. timestamp(u,m) < timestamp(v,m)
and |rating(u,m) - rating(v,m)| ≤ δ = 3.

3. For each topic z, the influence probability pzu,v between
u and v is given by the ratio between the number of com-
mon z-movies rated first by u and then by v with similar
scores and the number of common z-movies.

The resulting Flixster diffusion network has 35,735 nodes,
183,898 edges, 23,750 movies, 314,5202 ratings, an average
degree of 10.29, and a maximal degree of 309.

Tweet recommendation in Twitter. We have built a sec-
ond dataset for tweet recommendation to groups, by crawl-
ing the Twitter platform via the Twitter API. This dataset
contains a social network (nodes representing Twitter users,
edges between them corresponding to follower-followee re-
lationships) and tweets (retweets) posted by the network’s
members. Therefore, items are now tweets, which may be
posted by one or several users (via retweeting), ratings are
now binary values (tweeted or not).

Over this dataset, considering that the items to be recom-
mended are tweets, we must devise the topical distribution
thereof. For that, similar to (Shin et al. 2015), we model
each word appearing in tweets by a topical vector by us-
ing the word embedding technique word2vec (Mikolov et al.
2013). We then cluster these vector representations of tweet
text into a predefined number of topics with the k–means

algorithm. Using the cluster information with the aid of Sil-
houette Coefficient (Aranganayagi and Thangavel 2007), we
then create a histogram of clusters for each tweet. In this way
each tweet is encoded as a distribution over a fixed number
of topic. For the best balance between quality and number
of clusters, we vary the number of cluster between 1 and 50
and get the best coefficient of 0.11, corresponding to 36 clus-
ters. We can then compute the influence probability values
among nodes in the same way as for Flixster.

The resulting Twitter diffusion network has 67,598 nodes,
349,630 edges, 98,560 tweets, 9,358,790 ratings, an average
degree of 24.87, and a maximal degree of 2,927.

Book recommendation in Douban. We describe next the
Douban dataset, collected by (Zhao and Ji 2018). Douban is
a popular Chinese social network that allows users to rate
and publish content related to movies, books, music, and
events. Focusing on books, the dataset includes rating in-
formation along with social links, and users can join a vari-
ety of groups. Moreover, Douban has recently added a geo-
location feature. We exploited the groups information and
the geo-location to extract a cohesive network of diffusion,
in order to test our algorithms on a network that is denser
than the previous two. As before, we used common book
ratings between users to establish the topic-wise influence
probability vectors. In Douban, we have in total 897 tags
(tags are originally generated by users). We first set a thresh-
old corresponding to a minimum number of books as 100,
and we use word2vec to cluster the remaining 626 tags to
59 clusters, corresponding to the best Silhouette Coefficient
(Aranganayagi and Thangavel 2007). The resulting dataset
has 10,353 users, 17,454 books, 2,356 groups, 143,464 rat-
ings, average degree of 45.36, maximal degree of 5,546.

Performance indicators. In order to understand how the
overall objective is impacted by the addition of spread, as
well as the impact of the weights associated with the three
objective, the first performance indicator we consider is the
social benefit score, i.e., the overall score

α·SW (G, I)+β·F (G, I)+(1−α−β)·Spread(G|−→γ I) (15)

We consider validation precision as a second indicator,
aiming to evaluate how often the recommendation retrieves
items that are already rated by the group in the real world.
After the items already rated by the group are “muted” (re-
moved from the rating collection), through our algorithms,
we recommend a list of selected items to the targeted group
and, whenever a “muted” item is in this list, we count this
as a hit (a binary value), leading in the end to an overall hit
ratio for the recommended top-k list of items.

While the objective of our model is to satisfy the group
users interests, which we evaluate with the social benefit
score and validation precision, spread beyond the group is
another indicator for performance that we must take into ac-
count. By evaluating spread efficiency, we denote the later
propagation of the recommendation items within the given
social network G = (V, E), beyond the given group G ⊂ V .

Groups and items. Over the three datasets, we selected
the targeted recommendation groups G and lists of items I
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Figure 4: Execution time for greedy and top-k algorithms, with size of candidate set between 20× k and 50× k, k = 3.

Figure 5: TA / NRA comparison by number of accesses.

from which we recommend in our experiments. We did this
selection by two methods, plus a random baseline.

In a first method, groups-to-items, we firstly select an x-
core group G of users (x-cores are tightly connected com-
munities, where each member has at least x links to other
members of that community (Ding et al. 2017)). Then, we
initiate the list of items I up for recommendation by select-
ing k items (for several values of k), among the most rated
by the group. For this selection method, we considered 2-
cores with 10 or 20 users, and 3-cores with 10 or 15 users.

In a second method, items-to-groups, we randomly select
k items, based on rating distribution, from the top-100 most
rated ones. We then find the users who rated these items,
in order to construct a group we recommend to (we stop
when a first usable group is found, depending on edge den-
sity within). For this selection method, we consider groups
of 10, 15, and 20 users, with a density of at least 50 edges.

Finally, we also consider as a baseline selection method
one for 20 randomly chosen users and k items among the
most rated common items from them.

The final list of items I to be recommended consists then
of the selected k relevant items plus 9 × k items randomly

Figure 6: Comparison with MWU on benefit, precision
(Flixster).

selected from the overall item set. k, the recommendation
result size, varies from 1 to 5. For all items up for recom-
mendation, we remove the ratings relations between group
members before running our recommendation algorithms.
For each setting, the methods are executed 50 times (for dif-
ferent groups/items), with results averaged.

Greedy evaluation results. We benchmark first the per-
formance of the greedy algorithm, in the following scenar-
ios: (a) social welfare only, (b) fairness only, (c) welfare
and fairness equally, without spread, (d) influence spread
only, and (e) all three objectives jointly. Specifically, the pa-
rameter values are (i) α = 1, β = 0, i.e., maxSW (G, I),
(ii) α = 0, β = 1, i.e., maxF (G, I), (iii) α = 0.5, β =
0.5, i.e.,max 0.5 · SW (G, I) + 0.5 · F (G, I), (iv) α =
0, β = 0, i.e., maxSpread(G|−→γ I), (v) α = 0.15, β =
0.15, i.e., max 0.15 · SW (G, I) + 0.15 · F (G, I) + 0.7 ·
Spread(G|−→γ I). The linear combination by α = 0.15, β =
0.15 did slightly better than other combinations of the three
objectives, such as α = β = 0.45, or α = β = 0.3. We also
include for comparison three baseline methods: two based
on the collaborative filtering approach of (Koren and Bell
2015), described below and denoted CF GP and CF Item,
along with one based on Integer Programming (IP) (Fig-
ures 1, 2, and 3). These results show consistently that by
the addition of spread as an objective for group recommen-
dation (along social welfare and fairness), across different
datasets and settings, we can indeed obtain higher spread,
while maintaining similar benefit levels and only slightly
losing in terms of precision. The results over the 50 runs
are generally stable, as can be seen from the confidence in-
tervals in the plots.
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Collaborative Filtering (CF) baseline. We consider two
baseline methods that directly apply collaborative filtering
(Koren and Bell 2015).The first one is on an aggregated
user profile. For user-user collaborative filtering, we aggre-
gate the relevance vectors of the group’s members into a
single, group profile. With respect to this aggregated vec-
tor, we then take similar, individual user profiles (10 nearest
neighbors, by cosine similarity, in our experiments) and their
adopted items are used for the recommendation. The second
one is item-item based. We rank items by the relevance score
rel(u, i) and choose each k recommended items per user u.
For a give a group G, we sum the top-k items per every user
u, and pick the final top-k items as the recommendation re-
sult for the group.

Integer Programming (IP). Since the function that we
adopt is not an overly complex one, using an integer pro-
gramming solver could be a reasonable baseline for the com-
bination of the SW and F functions. This integer program
can be formulated as in (Xiao et al. 2017), with the main
flow in 6:

maxα · SW (G, I) + β · 1
k

Utilitymin

s.t.
∑
i

Xi = k, Utility(u, I) ≥ Utilitymin, ∀u ∈ G

Xi ∈ {0, 1} (16)

Due to space reasons, we leave out of this paper some
of our experimental results, for (i) 2-cores groups with 20
users and 3-cores groups with 10 or 15 users, (ii) groups of
10 and 20 users, with a density of at least 50 edges. These
experimental results show similar trends of gains, in terms
of spread, with good performance for benefit and precision.

Comparison with top-k algorithms. We next investigate
the performance of our adaptations of the top-k algorithms
NRA / TA, comparing them with the greedy algorithm on
precision and spread efficiency (we did not revisit benefit as
we were mainly focused on model validation).

The initial objective for these methods was to improve
upon the execution time of the greedy approach. Therefore,
in a first experiment, we compared execution time, for a can-
didate set size that has a wider rage of values (instead of
10 × k), in Figure 4. This was done for the setting of the 2-
core group of 10 users and for the group of 15 users having at
least 50 intra-group edges, for the three datasets. As shown

Algorithm 6 Integer Programming Based Algorithm

Require: Given user u ∈ G; set of targeted items I; recom-
mendation list :k ; α = β = 0.15

1: Solve the convex programming with an IP solver, denote
the solution as Xi, ∀i ∈ I based on equation.16;

2: Select top items with best value;
3: Swap items to the final objective function with spread,

and output the recommendation list and find the k item
with greatest value L = Xi ∈ Ik

in Fig. 4, the execution times of the top-k approaches are
three to four times less than the ones of the greedy method,
and these values grow at a slower pace as the candidate set
size grows. We ignore MWU in Fig. 4, as it is much too
expensive compared to the greedy method.

We then looked into the number of accesses in the pre-
computed lists, to grasp when each top-k algorithm may per-
form better. Since the NRA adaptation requires only sequen-
tial accesses, while the TA-one relies on random accesses by
item lookup, we compare the two by setting a 37-to-1 cost
ratio for random vs. sequential accesses (Bonér 2012) (cost
by reading 1MB from SSD) in Fig. 5, where we can see
that overall NRA tends to outperform TA, even if its stop-
early condition may be met later. We also observed in our
experiments that the two top-k algorithms remain close to
the greedy one for precision, and perform comparably well
for spread.

MWU comparison for precision and benefit. We present
in Fig. 6 the comparison with the MWU meta-parameter ap-
proach. We compare MWU (denoted M1 MWU) with the
top-k algorithm approach having α = 0.15, β = 0.15. Re-
call that MWU has a high computational cost – it is in effect
running the optimization algorithm multiple times – so the
comparison is made only on the Flixster dataset, using the
same group settings as the previous experiments.

We can observe that MWU does indeed help with find-
ing higher quality recommendation lists, yet our method re-
mains quite close. Overall, MWU’s computation cost makes
the marginal gains in effectiveness hard to justify in practice,
but we leave this direction, of further optimizing an MWU-
like meta-parameter approach, for future work.

Conclusions and Future Work
Influence-aware group recommendation is a challenging
extension of the classic group recommendation problem,
where the balance between in-group coherence and outside
spread efficiency needs to be taken into account. We pre-
sented a model and problem formulation for it, and we an-
alyzed the scalarization approach and the associated greedy
algorithm. We then designed optimizations based on top-k
methods, in order to improve the running time of the rec-
ommendations. In terms of future work, we aim to inves-
tigate further the link between multi-objective optimization
and our group recommendation problem, starting with the
multiplicative weight update (MWU) method. We also look
forward to investigate scenarios in which users try to “game
the system”, and also provide solutions to re-use results from
other users of a system.
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