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ABSTRACT
Recent advances in crowdsourcing technologies enable computa-
tionally challenging tasks (e.g., sentiment analysis and entity reso-
lution) to be performed by Internet workers, driven mainly by mon-
etary incentives. A fundamental question is: how should work-
ers be selected, so that the tasks in hand can be accomplished
successfully and economically? In this paper, we study the Jury
Selection Problem (JSP): Given a monetary budget, and a set of
decision-making tasks (e.g., “Is Bill Gates still the CEO of Mi-
crosoft now?”), return the set of workers (called jury), such that
their answers yield the highest “Jury Quality” (or JQ). Existing JSP
solutions make use of the Majority Voting (MV) strategy, which
uses the answer chosen by the largest number of workers. We show
that MV does not yield the best solution for JSP. We further prove
that among all voting strategies (including deterministic and ran-
domized strategies), Bayesian Voting (BV) can optimally solve JSP.
We then examine how to solve JSP based on BV. This is technically
challenging, since computing the JQ with BV is NP-hard. We solve
this problem by proposing an approximate algorithm that is com-
putationally efficient. Our approximate JQ computation algorithm
is also highly accurate, and its error is proved to be bounded within
1%. We extend our solution by considering the task owner’s “be-
lief” (or prior) on the answers of the tasks. Experiments on syn-
thetic and real datasets show that our new approach is consistently
better than the best JSP solution known.

1. INTRODUCTION
Due to advances in crowdsourcing technologies, computation-

ally challenging tasks (e.g., sentiment analysis, entity resolution,
document translation, etc.) can now be easily performed by human
workers on the Internet. As reported by the Amazon Mechanical
Turk in August 2012, over 500,000 workers from 190 countries
worked on human intelligence tasks (HITs). The large number of
workers and HITs have motivated researchers to develop solutions
to streamline the crowdsourcing process [6,7,14,25,27,31,43,44].

In general, crowdsourcing a set of tasks involves the following
steps: (1) distributing tasks to workers; (2) collecting the workers’
answers; (3) deciding final result; and (4) rewarding the workers.
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An important question is: how should workers be chosen, so that
the tasks in hand can be completed with high quality, while mini-
mizing the monetary budget available? A related question, called
the Jury Selection Problem (or JSP), has been recently proposed by
Cao et al. [7]. Similar to the concept from law courts, a jury, or jury
set denotes a subset of workers chosen from the available worker
pool. Given a monetary budget and a task, the goal of JSP is to find
the jury with the highest expected performance within the budget
constraint. The kind of tasks studied in [7] is called the decision-
making task: a question that requires an answer of either yes or
no (e.g., “Is Bill Gates still the CEO of Microsoft now?”) and has
a definitive ground truth. Decision-making tasks [7,39,41,44] are
commonly used in crowdsourcing systems because of their con-
ceptual simplicity. The authors of [7] were the first to propose a
system to address JSP for this kind of tasks.

In this paper, we go beyond [7] and perform a comprehensive
investigation of this problem. Particularly, we ask the following
questions: (1) Is the solution in [7] optimal? (2) If not, what is
an optimal solution for JSP? To understand these issues, let us first
illustrate how [7] solves JSP.

Figure 1 shows a decision-making task, to be answered by some
of the seven workers labeled from A to G where each worker is as-
sociated with a quality and a cost. The quality ranges from 0 to 1,
indicating the probability that the worker correctly answers a ques-
tion. This probability can be estimated by using her background in-
formation (e.g., her performance in other tasks) [7,25,37]. The cost
is the amount of monetary reward the worker can get upon finishing
a task. In this example,A has a quality of 0.77 and a cost of 9 units.
For a jury, the jury cost is defined as the sum of workers’ costs in
the jury and the jury quality (or JQ) is defined as the probability
that the result returned by aggregating the jury answers is correct.
Given a budget of B units, a feasible jury is a jury whose jury cost
does not exceed B. For example, if B = $20, then {B,E, F} is
a feasible jury, since its jury cost, or $5 + $5 + $2 = $12, is not
larger than $20.

To solve JSP, a naive solution is to compute the JQ for every
feasible jury, and return the one with the highest JQ. [7] studies
how to compute JQ for a jury where the jury’s returned result is
decided by Majority Voting (MV). In short, MV returns the result
as the one corresponding to the most workers. In the following, we
consider each worker’s answer as a “vote” for either “yes” or “no”.
Let us consider {B,E, F} again, the probability that these workers
gives a correct result according to MV is 0.7·0.6·0.6+0.7·0.6·(1−
0.6)+0.7 ·(1−0.6) ·0.6+(1−0.7) ·0.6 ·0.6 = 69.6%.Moreover,
since {A,C,G} yields the highest JQ among all the feasible juries,
it is considered to be the best solution by [7].

As illustrated above, MV is used to solve JSP in [7]. In addition
to MV, researchers have proposed a variety of voting strategies,



Optimal Jury Selection SystemDecision Making Task

Is Bill Gates
now the CEO
of Microsoft ?

 YES  (70%)    NO (30%)

A B C D E F G

( 0.77, $9 ) ( 0.7, $5 ) ( 0.8, $6 ) ( 0.65, $7 ) ( 0.6, $5 ) ( 0.6, $2 ) ( 0.75, $3 )

All candidate Workers Set ( quality, cost )
Budget Optimal Jury Set Quality Required

5  { F, G } 75% 5
10  { C, G } 80% 9
15  { B, C, G } 84.5% 14
20  { A, C, F, G } 86.95% 20

Budget-Quality Table B C G

( 0.7, $5 ) ( 0.8, $6 ) ( 0.75, $3 )

Budget 14

Figure 1: Optimal Jury Selection System.

such as Bayesian Voting (BV) [25], Randomized Majority Vot-
ing [20], and Random Ballot Voting [33]. Like MV, these voting
strategies decide the final result of a decision-making task based on
the workers’ votes. For example, BV computes the posterior prob-
ability of answers according to Bayes’ Theorem [3], based on the
workers’ votes, and returns the answer having the largest posterior
probability.

In this paper, we investigate an interesting problem: is it possible
to find the optimal voting strategy for JSP among all voting strate-
gies? One simple answer to this question is to consider all voting
strategies. However, as listed in Table 2, the number of existing
strategies is very large. Moreover, multiple new strategies may
emerge in the future. We address this question by first studying
the criteria of a strategy that produce an optimal solution for JSP
(i.e., given a jury, the JQ of the strategy is the highest among all the
possible voting strategies). This is done by observing that voting
strategies can be classified into two major categories: deterministic
and randomized. A deterministic strategy aggregates workers’ an-
swers without any degree of randomness; MV is a typical example
of this class. For a randomized strategy, each answer is returned
with some probability. Using this classification, we present the cri-
teria required for a voting strategy that leads to the optimal solution
for JSP. We discover that BV satisfies the requirements of an op-
timal strategy. In other words, BV is the optimal voting strategy
with respect to JQ, and will consistently produce better quality ju-
ries than the other strategies.

How to solve JSP with BV then? A straightforward solution is to
enumerate all feasible juries, and find the one with the largest value
of JQ. However, this approach suffers from two major problems:

1. Computing the JQ of a jury for BV requires enumerating an
exponentially large number of workers’ answers. In fact, we
show that this problem is NP-hard;

2. The number of feasible juries is exponentially large.

To solve Problem 1, we develop a polynomial-time-based ap-
proximation algorithm, which enables a large number of candidate
answers to be pruned, without a significant loss of accuracy. We
further develop a theoretical error bound of this algorithm. Par-
ticularly, our approximate JQ computation algorithm is proved to
yield an error of not more than 1%. To tackle Problem 2, we
leverage a successful heuristic, the simulated annealing heuristic,
by designing local neighborhood search functions. To evaluate our
solutions, we have performed extensive evaluation on real and syn-
thetic crowdsourced data. Our experimental results show that our
algorithms effectively and efficiently solve JSP. The quality of our
solution is also consistently better than that of [7].

We also study how to allow the provider of the tasks to place her
confidence information (called prior) on the answers of the task.
She may associate a “belief score” on the answers to the tasks, be-
fore the crowdsourcing process starts. For instance, in Figure 1, if
she is more confident that Bill Gates is still the CEO of Microsoft,
she can assign 70% to yes, and 30% to no. Intuitively, we prove

that under BV, the effect of prior is just the same as regarding the
task provider as another worker, having the same quality values as
the prior.

Figure 1 illustrates our crowdsourcing system, which we called
the “Optimal Jury Selection System”. In this system, the task
provider published a decision-making task. Then, based on the
the workers’ information (i.e., their individual quality and cost),
a “budget-quality table” is generated. In this table, each row con-
tains a budget, the computed optimal jury, its estimated jury quality
and the required budget for the jury. Based on this table, the task
provider can conveniently decide the best budget-quality combina-
tion. For example, she may deem that increasing the budget from
15 units to 20 units is not worthwhile, since the quality increases
only by around 2.5%. In this example, the task provider selects the
jury set {B,C,G} that is the best under a budget of 15 units. This
chosen jury set would cost her only 14 units.

Recall that [7] focuses on addressing JSP under MV on decision-
making tasks and we address the optimality of JSP on decision-
making tasks by considering all voting strategies, where each
worker’s quality is modeled as a single parameter. In reality, multi-
ple choice tasks [25,34,42] are also commonly used in crowdsourc-
ing and several works [1,34,36] model each worker as a confusion
matrix rather than a single quality score. We also briefly discuss
here the optimality of JSP for other task types and worker models,
and how our solutions can be extended to these other variants.

The rest of this paper is arranged as follows. We describe the
data model and the problem definition in Section 2. In Section 3,
we examine the requirements of an optimal voting strategy for JSP,
and show that BV satisfies these criteria. We present an efficient
algorithm to compute JQ of a jury set in Section 4 and develop fast
solutions to solve JSP in Section 5. In Section 6, we present our
experimental results. We discuss how our solutions can be extended
for other task types and worker models in Section 7. In Section 8,
we review the related works and Section 9 concludes the paper.

2. DATA MODEL & PROBLEM DEFINI-
TION

We now describe our data model in Section 2.1 and define the
jury selection problem in Section 2.2.

2.1 Data Model
In this paper, we focus on the decision-making tasks where each

task has two possible answers (either yes or no). We use 1 and
0 to denote yes and no, respectively. We assume that each task
has a latent true answer (or ground truth) t ∈ {0, 1}, which is
unknown in advance. The task provider usually assigns a prior on
the task, which describes her prior knowledge in the probability
distribution of the task’s true answer. We denote the prior by α
where Pr(t = 0) = α, and Pr(t = 1) = 1−α. If the task provider
has no prior knowledge for the task, then we assume α = 0.5.

A jury (or jury set), denoted by J , is a collection of n workers
drawn from a set of N candidate workers W = {j1, j2, . . . , jN},
i.e., J ⊆ W , |J | = n. Without loss of generality, let J =



{j1, j2, . . . , jn}. In order to infer the ground truth (t), we leverage
the collective intelligence of a jury, i.e, we ask each worker to give
a vote for the task. We use V , a voting, to denote the set of votes
(answers) given by a jury J , and so V = {v1, v2, . . . , vn} where
vi ∈ {0, 1} is the vote given by ji. We assume the independence
of each worker’s vote, an assumption also used in [7,18,25,34].

We follow the worker model in previous works [7,25,44], where
each worker ji is associated with a quality qi ∈ [0, 1] and a cost
ci. The quality qi indicates the probability that the worker con-
ducts a correct vote, i.e., qi = Pr(vi = t), and the cost ci repre-
sents the money (or incentive) required for ji to give a vote. A few
works [7,25,37] have recently addressed how to derive the quality
and the cost of a worker by leveraging the backgrounds and an-
swering history of individuals. Thus, similar to [7], we assume that
they are known in advance.

We remark that the optimality of JSP and our solutions can
be extended to address other task types and worker models used
in [1,25,34,34,36,42]. We will briefly discuss these extensions in
Section 7.

2.2 Problem Definition
Let B be the budget of a task provider, i.e., a maximum of B

cost units can be given to a jury to collect their votes. Our goal is
to solve the Jury Selection Problem (denoted by JSP) which selects
a jury J under the budget constraint (

∑
ji∈J ci ≤ B) such that the

jury’s collective intelligence is maximized.
The collective intelligence of a jury is closely related to the Vot-

ing Strategy, denoted by S, which estimates the true answer of the
task based on the prior, the jury and their votes. We say the esti-
mated true answer is the result of the voting strategy. A detailed
discussion about the voting strategy is given in Section 3.1.

In order to quantify the jury’s collective intelligence, we define
the Jury Quality (or JQ in short) which essentially measures the
probability that the result of the voting strategy is correct. The score
of JQ is given by function JQ(J, S, α). We will give a precise
definition for JQ in Section 3.2.

Let Θ denote the set of all voting strategies and C denote the set
of all feasible juries (i.e., C = {J | J ⊆ W ∧

∑
ji∈J ci ≤ B}).

The aim of JSP is to select the optimal jury J∗ such that

given α and qi, ci (for i = 1, 2, . . . , N) (1)
J∗ = arg max

J∈C
max
S∈Θ

JQ(J, S, α) (2)

Note that existing work [7] only focuses on majority voting strat-
egy (MV) and solves arg maxJ∈C JQ(J,MV, 0.5), which, as we
shall prove later, is sub-optimal for JSP.

In the rest of the paper, we first discuss how to derive the optimal
voting strategy S∗ such that JQ(J, S∗, α) = maxS∈Θ JQ(J, S, α)
(Section 3). We then talk about the computation of JQ(J, S∗, α)
(Section 4) and finally address of problem of finding J∗ (Section 5).

Table 1 summarizes the symbols used in this paper.

3. OPTIMAL VOTING STRATEGY
In this section, we present a detailed description for the voting

strategy in Section 3.1. We then formally define JQ in Section 3.2.
Finally, we give an optimal voting strategy with respect to JQ in
Section 3.3.

3.1 Voting Strategies
As mentioned, a voting strategy S gives an estimation of the true

answer t based on the prior α, the jury J and their votes V . Thus,
we model a voting strategy as a function S(V, J, α), whose result
is an estimation of t. Based on whether the result is given with

Table 1: Table of Symbols
Symbol Description

t the ground truth for a task, and t ∈ {0, 1}
α prior given by the task provider, and α = Pr(t = 0)
W a set of all candidate workers W = {j1, j2, . . . , jN}
J a jury, J ⊆W and |J | = n, J = {j1, j2, . . . , jn}
V a voting given by J , and V = {v1, v2, . . . , vn}
qi the quality of worker ji and qi ∈ [0, 1]
ci the cost of worker ji
B the budget provided by the task provider
Θ a set containing all voting strategies
C the set of all possible juries within budget constraint

degree of randomness, we can classify the voting strategies into
two categories: deterministic voting strategy and randomized vot-
ing strategy.

DEFINITION 1. A deterministic voting strategy S(V, J, α) re-
turns the result as 0 or 1 without any degree of randomness.

DEFINITION 2. A randomized voting strategy S(V, J, α) re-
turns the result as 0 with probability p and 1 with probability 1−p.

EXAMPLE 1. The majority voting strategy (or MV) is a typical
deterministic voting strategy, and it gives result as 0 if more than
half of workers vote for 0 (i.e.,

∑n
i=1 (1− vi) ≥ n+1

2
); otherwise,

the result is 1.
Its randomized counterpart is called randomized majority vot-

ing strategy (or RMV), which returns the result with probability
proportional to the number of votes. That is, RMV returns 0 with
probability p = 1

n

∑n
i=1 (1− vi), and 1 with probability 1− p.

Note that randomized strategies are often introduced to improve
the error bound for worst-case analysis [23]. And thus, they are
widely used when the worst-case performance is the main concern.

Table 2: Classification of Voting Strategies
Deterministic Voting Strategies Randomized Voting Strategies

Majority Voting (MV) [7] Randomized Majority Voting (RMV) [20]
Half Voting [28] Random Ballot Voting [33]

Bayesian Voting [25] Triadic Consensus [2]
Weighted MV [23] Randomized Weighted MV [23]

· · · · · ·

Table 2 shows a few voting strategies, which are introduced in
previous works, and their corresponding category.

3.2 Jury Quality
In order to measure the goodness of a voting strategy S for a

jury J , we introduce a metric called Jury Quality (or JQ in short).
We model JQ by a function JQ(J, S, α) which gives the quality
score as the probability of drawing a correct result under the voting
strategy, i.e.,

JQ(J, S, α) = Pr(S(V, J, α) = t) (3)

where V ∈ {0, 1}n and t ∈ {0, 1} are two random variables
corresponding to the unknown jury’s voting, and the task’s latent
true answer. For notational convenience, we omit J and α in S
when their values are understood and simply write S(V) instead
of S(V, J, α).

Let 1{st} be the indicator function, which returns 1 if the state-
ment st is true, and 0 otherwise. Let Ω be the domain of V, i.e,



Ω = {0, 1}n. JQ(J, S, α) can be rewritten as follows.

JQ(J, S, α) = 1 · Pr(S(V) = t) + 0 · Pr(S(V) 6= t)

= E[1{S(V)=t}]

=
∑

t∈{0,1}

∑
V ∈Ω

Pr(V = V, t = t) · E[1{S(V )=t}]

We now give a precise definition for JQ as below.

DEFINITION 3 (JURY QUALITY). Given a jury J and the
prior α, the Jury Quality (or JQ) for a voting strategy S, denoted
by JQ(J, S, α), is defined as

α ·
∑

V ∈Ω
Pr(V = V | t = 0) · E[1{S(V )=0}]

+ (1− α) ·
∑

V ∈Ω
Pr(V = V | t = 1) · E[1{S(V )=1}].

(4)

For notational convenience, we write Pr(V |t = 0) instead of
Pr(V = V |t = 0), and Pr(V |t = 1) instead of Pr(V = V |t =
1). Next, we give two marks in computing JQ.

1. Since workers give votes independently, we have

Pr(V | t = 0) =
∏n

i=1
q

(1−vi)
i · (1− qi)vi

Pr(V | t = 1) =
∏n

i=1
qvii · (1− qi)

(1−vi)

2. E[1{S(V )=0}] and E[1{S(V )=1}] are either 0 or 1 if S is a
deterministic voting strategy; or value of p and 1 − p if S is
a randomized voting strategy (refer to Definition 2).

We next give an example to illustrate the computation of JQ.

EXAMPLE 2. Suppose α = 0.5 and there are 3 workers in J
with workers’ qualities as 0.9, 0.6, 0.6 respectively. To compute JQ
for MV, we enumerate all possible combinations of V (∈ {0, 1}3)
and t (∈ {0, 1}), and show the results in Figure 2. The 3rd column
in each table represents the probability that a specific combination
(V and t) exists. The 4th column shows the result of MV for each
V . The symbol

√
indicates whether MV’s result is correct or not

(according to the value of t). And thus, JQ(J,MV, α) equals to
the summation of probabilities where symbol

√
occurs. Take V =

{1, 0, 0} and t = 0 as an example. First, Pr(V = V, t = 0) =
0.018. Since

∑3
i=1(1− vi) = 2 ≥ n+1

2
= 2, we have MV (V ) =

0 = t. Thus, the probability 0.018 is added to JQ(J,MV, α).
Similarly, for V = {1, 0, 0} and t = 1, as MV (V ) = 0 6= t, then
Pr(V = V, t = 1) = 0.072 will not be added to JQ(J,MV, α).
Considering all V ’s and t’s, the final JQ(J,MV, α) = 79.2%.

3.3 Optimal Voting Strategy
In the last two sections, we present a few voting strategies and

define Jury Quality to quantify the goodness of a voting strat-
egy. Thus an interesting question is: does an optimal voting strat-
egy S∗ with respect to JQ exist? That is, given any J and α,
JQ(J, S∗, α) = maxS∈Θ JQ(J, S, α). Note that if S∗ exists,
we can then solve JSP without enumerating all voting strategies in
Θ (refer to Equation 2).

To answer this question, let us reconsider Definition 3. Let
h(V ) = E[1{S(V )=0}]. We have (i) h(V ) ∈ [0, 1]; and (ii)
E[1{S(V )=1}] = 1−h(V ). Also, letP0(V ) = Pr(V = V, t = 0),
and P1(V ) = Pr(V = V, t = 1). Hence, JQ(J, S, α) can be
rewritten as∑

V ∈Ω
[ P0(V ) · h(V ) + P1(V ) · (1− h(V )) ]

=
∑

V ∈Ω
[ h(V ) · (P0(V )− P1(V )) + P1(V ) ]

(a) Enumeration of all 23 = 8 possible votings in Ω ( t = 0 )

(b) Enumeration of all 23 = 8 possible votings in Ω ( t = 1 )

Figure 2: Example of JQ computation for MV and BV (α =
0.5, and the quality of workers are 0.9, 0.6, and 0.6)

This gives us a hint to maximize JQ(J, S, α) and find the op-
timal voting strategy S∗. Let h∗(V ) = E[1{S∗(V )=0}]. It is ob-
served that P1(V ) is constant for a given V and h(V ) ∈ [0, 1] for
all S’s (no matter it is a deterministic one or a randomized one).
Thus, to optimize JQ(J, S, α), it is required that

1. if P0(V )− P1(V ) < 0, h∗(V ) = 0, and so, S∗(V ) = 1;

2. if P0(V )− P1(V ) ≥ 0, h∗(V ) = 1, and so, S∗(V ) = 0.

We summarize this observation as below.

THEOREM 1. Given α, J , and V , the optimal voting strategy,
denoted by S∗, decides the result as follows:

1. S∗(V ) = 1 if α ·
∏n
i=1 q

(1−vi)
i · (1− qi)vi <

(1− α) ·
∏n
i=1 q

vi
i · (1− qi)

(1−vi); or

2. S∗(V ) = 0, otherwise.

Note that S∗ is a deterministic voting strategy, and it’s essentially
a voting strategy based on the Bayes’ Theorem [11]. The reason is
as follows. According to the Bayes’ Theorem, based on the ob-
served voting V , Pr(t = 0|V = V ) = P0(V )/Pr(V = V ),
and similarly Pr(t = 1|V = V ) = P1(V )/Pr(V = V ). There-
fore, P0(V )−P1(V ) < 0 indicates Pr(t = 0|V = V ) < Pr(t =
1|V = V ). And so, 1 has a higher probability to be the true answer
than 0. Thus, the voting strategy based on the Bayes’ Theorem re-
turns 1 as the result, which is consistent with S∗ in Theorem 1.
Next, we give a formal definition for Bayesian Voting (BV) and
summarize the above observation in Theorem 1.

DEFINITION 4. The voting strategy based on the Bayes’ Theo-
rem, denoted by Bayesian Voting (or BV in short), returns the result
as 1, if Pr(t = 0) · Pr(V = V |t = 0) < Pr(t = 1) · Pr(V =
V |t = 0); or 0, otherwise.

COROLLARY 1. BV is optimal w.r.t. JQ, i.e., S∗ = BV .

Note that the BV is also used in [1,18,25]. In the rest of the paper,
we use S∗ and BV interchangeably. We remark that the optimality
of BV is based on two assumptions: (1) the prior and workers’
qualities are known in advance; (2) JQ (Definition 3) is adopted to
measure the goodness of a voting strategy.



EXAMPLE 3. Let us reconsider Figure 2 and see how
JQ(J,BV, α) is computed. The 5th column shows results given by
BV. The two numbers in bracket correspond to P0(V ) and P1(V ),
respectively. The value in parenthesis is the estimated true answer
returned by BV. We again use a symbol

√
to indicate the correct

voting result. Take V = {1, 0, 0} and t = 0 as an example. Since
α · (1− q1) · q2 · q3 = 0.018 < (1−α) · q1 · (1− q2) · (1− q3) =
0.072, we have BV (V ) = 1 6= t, thus 0.018 is not added into
JQ(J,BV, α). Otherwise, for V = {1, 0, 0} and t = 0, similarly
we derive that 0.072 is added in JQ(J,BV, α). Recall Example 2,
when V = {1, 0, 0}, if we consider two cases of t, then 0.072 is
added into JQ(J,BV, α); but here we have seen in Example 2 that
0.018 is added into JQ(J,MV, α). By considering all V and t, we
have JQ(J,BV, α) = 90% > JQ(J,MV, α) = 79.2%.

Intuitively, the reason why BV outperforms other voting strate-
gies is that BV considers the prior and worker’s qualities in deriv-
ing the result of a voting V , and only the one with larger posterior
probability is returned. Thus, it is more likely to return a correct
answer than other strategies. For example, assume α = 0.5 and the
voting V = {0, 1, 1} is given by workers with individual quality
0.9, 0.6 and 0.6 respectively. As 0.5 · 0.9 · (1− 0.6) · (1− 0.6) >
0.5 · (1− 0.9) · 0.6 · 0.6, BV returns 0 as the result. However, MV
does not leverage either the prior information or workers’ qualities,
and so, it returns 1, which is given by two lower quality workers.

Before we move on, we would like to discuss the effect of qi for
voting strategies. Intuitively, qi < 0.5 indicates that worker ji is
more likely to give an incorrect answer than a correct one. Thus, we
can either simply ignore this worker in the jury selection process,
or modify her answer according to the specific voting strategy. For
example, for MV, we can regard vote 0 as 1 and vote 1 as 0 if the
vote is given by a worker whose quality is less than 0.5; for BV,
according to its definition, it can reinterpret the vote given by a
worker with quality qi < 0.5 as an opposite vote given by a worker
with quality 1 − qi > 0.5.1 Moreover, in our experiments with
real human workers, we observed that their qualities were generally
well above 0.5. We thus assume that qi ≥ 0.5 in our subsequent
discussions, without loss of generality.

4. COMPUTING JURY QUALITY FOR OP-
TIMAL STRATEGY

In the previous section, we have proved that BV is the opti-
mal voting strategy with respect to JQ. And thus, in order to solve
JSP, we only need to figure out J∗ such that JQ(J∗, BV, α) is
maximized. An immediate question is whether JQ(J,BV, α) can
be computed efficiently. Unfortunately, we find that computing
JQ(J,BV, α) is NP-hard (Section 4.1). To alleviate this, we pro-
pose an efficient approximation algorithm with theoretical bounds
to compute JQ for BV in this section.

4.1 NP-hardness of computing JQ(J,BV, α)

Note that [7] has previously proposed an efficient algorithm to
compute JQ(J,MV, 0.5) in O(n logn). However, this polyno-
mial algorithm cannot be adapted to compute JQ for BV. The main
reason is that computing JQ for BV is an NP-hard problem.

THEOREM 2. Given α and J , computing JQ for BV, or
JQ(J,BV, α), is NP-hard.

The proof is non-trivial and we present the detailed proof
in the technical report [15] due to space limits. The idea of

1Details of the reinterpretation can be found in the technical
report [15].

    

    

    

    

 

Figure 3: Expressing A0(V ) +A1(V ) using R(V ) and u(V )

the proof is that the partition problem [32] (a well-known NP-
complete problem) can be reduced to the problem of comput-
ing JQ(J,BV, 0.5) for some J . Hence, the computation of
JQ(J,BV, 0.5) is not easier than the partition problem. More-
over, computing JQ(J,BV, 0.5) is not in NP (it is not a decision
problem), which makes the problem of computing JQ(J,BV, α)
for α ∈ [0, 1] NP-hard.

To avoid this hardness result, we propose an approximation al-
gorithm. We first discuss the computation of JQ(J,BV, 0.5) in
Section 4.2 and 4.3, and give its approximation error bound in Sec-
tion 4.4. Finally, we briefly discuss how to adapt the algorithm to
α ∈ [0, 1] in Section 4.5.

4.2 Analysis of Computing JQ(J,BV, 0.5)

Let us first give some basic analysis for computing
JQ(J,BV, 0.5) before we introduce our approximation al-
gorithm. To facilitate our analysis, we first define a few symbols.

• A0(V ) = 0.5 · Pr(V | t = 0) · 1{BV (V )=0};
• A1(V ) = 0.5 · Pr(V | t = 1) · 1{BV (V )=1};
• V = {v̄1, v̄2, . . . , v̄n}, where v̄i = 1− vi (1 ≤ i ≤ n).

From Figure 2 we observe that A0(V ) = A1(V ). For exam-
ple, A0({0, 1, 0}) = A1({1, 0, 1}) = 0.108 and A0({1, 0, 1}) =
A1({0, 1, 0}) = 0. The observation motivates us to consider
A0(V ) and A1(V ) together, and we can prove that

JQ(J,BV, 0.5) =
∑

V ∈Ω
[ A0(V ) +A1(V ) ]

=
∑

V ∈Ω
[ A0(V ) +A1(V ) ],

(5)

as V → V defines a one-to-one correspondence between Ω and Ω.
We further define u(V ) and w(V ) as follows.

u(V ) = ln Pr(V |t = 0) =
∑n

i=1
[ (1− vi) ln qi + vi ln(1− qi) ],

w(V ) = ln Pr(V |t = 1) =
∑n

i=1
[ vi ln qi + (1− vi) ln(1− qi) ],

Let R(V ) = u(V ) − w(V ) and σ(qi) = ln qi
1−qi

(as qi ≥ 0.5,
σ(qi) ≥ 0), we have

R(V ) =
n∑
i=1

[ (1−2vi)·σ(qi) ], eu(V ) =
n∏
i=1

q
(1−vi)
i ·(1−qi)vi . (6)

As illustrated in Figure 3, we can expressA0(V )+A1(V ) based
on the sign of R(V ) and the value of u(V ). And therefore,
JQ(J,BV, 0.5) =

∑
V ∈Ω

[1{R(V )>0} · eu(V ) +1{R(V )=0} · e
u(V )

2
].

Motivated by the above formula2, we can apply an iterative ap-
proach which expands J with one more worker at each iteration
and thus compute JQ(J,BV, 0.5) in n total iterations. In the k-
th iteration, we consider V k ∈ {0, 1}k. We aim to construct a
map structure with (key, prob) pairs, where the domain of key is

2Note that the reason why A0(V ) 6= A1(V ) when u(V ) =

w(V ) is that as 0.5 · eu(V ) = 0.5 · ew(V ), based on Theorem 1,
BV (V ) = BV (V ) = 0, soA0(V ) = 0.5 ·eu(V ) andA1(V ) = 0.
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{ R(V k) | V k ∈ {0, 1}k }, and the corresponding value of the
key, or prob is

prob =
∑

R(V k)=key ∧ V k∈{0,1}k
eu(V k) . (7)

Suppose in the k-th iteration, such a map structure is constructed.
Then in the next iteration, we can generate a new map structure
from the old map structure: for each (key, prob) in the old map
structure, based on the possible choices of vk+1 and by considering
two formulas in Equation 6, we have

1. for vk+1 = 0, the new key key + σ(qk+1) is generated and
prob · qk+1 is added to the prob of the new key;

2. for vk+1 = 1, the new key key − σ(qk+1) is generated and
prob · (1− qk+1) is added to the prob of the new key.

EXAMPLE 4. We give an example to illustrate the above pro-
cess in Figure 4, where n = 2 and σ(q1) = σ(q2) = 1.2.
Starting from (0, 1), for v1 = 0 and v1 = 1, it respectively cre-
ates (σ(q1) : q1) and (−σ(q1) : (1 − q1)) in the first iteration.
Then it leverages the stored (key, prob) pair to generate new pairs
in the second iteration by considering different v2. Note that as
σ(q1) = σ(q2), if (σ(q1), q1) takes v2 = 1 and (−σ(q1), (1−q1))
takes v2 = 0, then they go to the same key = 0, and their new
prob, q1 · (1− q2) and (1− q1) · q2 are added together.

4.3 Bucket-Based Approximation Algorithm
By our intractability result for JQ we know that the domain of

keys, or {R(V ) | V ∈ {0, 1}n} is exponential. In order to address
this issue, we set a controllable parameter numBuckets and map
σ(qi) to a bucket integer bi ∈ [ 0, numBuckets ], where the interval
between adjacent buckets, called bucketsize (denoted as δ) is the
same. Suppose numBuckets = d · n, i.e., a constant multiple of
the number of jury members, then, for each iteration, the number
of possible values in the key is bounded by 2dn2 + 1 (in the range
[−dn2, dn2]) Considering all n iterations, the time complexity is
bounded by O(dn3), which is of polynomial order.

We detail this process in Algorithm 1. To start with, the function
GetBucketArray assigns bi to worker ji based on σ(qi). The
computation of bi proceeds as follows. At first, we fix a range
[0, upper ] where upper = maxi∈[1,n] {σ(qi)}. Then, we divide
the range into numBuckets of buckets with equal length, denoted
by δ = upper

numBuckets
. Finally, each worker ji’s bucket number

bi is assigned to its closet bucket: bi =
⌈
σ(qi)
δ
− 1

2

⌉
. Figure 5

illustrates an example where numBuckets = 4. Since σ(q1) is the
closet to bucket number 2, so b1 = 2, and similarly b2 = 3.

Algorithm 1 EstimateJQ

Input: J = {j1, j2 · · · jn}, numBuckets , n
Output: ĴQ

1: b = GetBucketArray(J,numBuckets, n);
2: b = Sort(b); // sort in decreasing order, for pruning
3: J = Sort(J); // sort based on worker quality, similar as above
4: aggregate = AggregateBucket(b, n); // for pruning
5: ĴQ = 0; // estimated JQ
6: SM [ 0 ] = 1; //initialize a map structure
7: for i = 1 to n do
8: M = map(); //initialize an empty map structure
9: for (key, prob) ∈ SM do

10: flag, value = Prune(key, prob, aggregate[i]);
11: if flag =true then
12: ĴQ+ = value;
13: continue // for pruning
14: if key + b[i] /∈M then
15: M [ key + b[i] ] = 0;
16: M [ key + b[i] ]+ = prob · qi; // for vi = 0
17: if key − b[i] /∈M then
18: M [ key − b[i] ] = 0;
19: M [ key − b[i] ]+ = prob · (1− qi); // for vi = 1
20: SM = M ;
21: for (key, prob) ∈ SM do
22: if key > 0 then
23: ĴQ + = prob;
24: if key = 0 then
25: ĴQ + = 0.5 · prob;
26: return ĴQ;

Algorithm 2 Pruning Techniques

def AggregateBucket(b, n):
aggregate = [ 0, 0 · · · 0 ]; // n elements, all 0
for i = n to 1 do

if i = n then
aggregate[i] = b[i];

else
aggregate[i] = aggregate[i+ 1] + b[i];

return aggregate

def Prune(key, prob, number):
flag =false;
if key > 0 and key − number > 0 then
flag =true; value = prob;

if key < 0 and key + number < 0 then
flag =true; value = 0;

return flag, value;

After mapping each worker to a bucket bi, we iterate over
n workers (step 7-20). For a given worker ji, based on each
(key , prob) pair in the stored map SM , we update key and prob,
based on two possible values of vi (steps 14-19)3 in the new map
M . SM will then be updated as the newly derived mapM for next
iteration (step 20). Finally, the (key , value) pairs in SM are used
in the evaluation of the Jury Quality (steps 21-25), based on the
cases in Figure 3.

Pruning Techniques. We can further improve the running time of
the approximation algorithm by applying some pruning techniques
in Algorithm 2, in order to prune redundant computations. For ex-
ample, assume n = 5, and the derived b = [3, 7, 4, 3, 2]. In the
second iteration, consider the key = 3 + 7 = 10 (v1 = 0 and

3Note that as we only care about the sign (+, 0 or −) of R(V ),
and we approximate σ(qi) as δ · bi, we can map σ(qi) to bi and
add/subtract the integer bi.



v2 = 0). No matter what the rest of the three votes are, the aggre-
gated buckets cannot be negative (since 4 + 3 + 2 = 9 < 10), so
we can safely prune the search space for key = 10 (which takes
23 = 8 computations). To further increase the efficiency, in Al-
gorithm 2 we first sort the bucket array and J in decreasing order
(step 2-3), guaranteeing that the highest bucket is considered first,
and then compute the aggregate array via AggregateBucket (step
4), which makes the pruning phase (step 10-13) more efficient. The
function Prune uses aggregate to decide whether to prune or not.

4.4 Approximation Error Bound
Let ĴQ denote the estimated value returned by Algorithm 1, and

JQ denote the real Jury Quality. We evaluate the additive error
bound on |JQ− ĴQ| and we can prove that:

ĴQ ≤ JQ and JQ− ĴQ < e
nδ
4 − 1, (8)

where n is the jury size and δ = upper
d·n is the bucketsize. Interested

readers can refer to technical report [15] for the detailed proof.
We next show that the bound is very small (< 1% by setting

d ≥ 200) in real cases. First we notice that (i) σ(q) is a strictly in-
creasing function and (ii) σ(0.99) < 5. So let us assume upper <
5. We can safely make the assumption, since if not, there exists a
worker of quality qi > 0.99, and then JQ ∈ (0.99, 1], as Lemma 1
will show. Thus we can just return ĴQ = qi > 0.99, which makes
JQ − ĴQ < 1%. After dividing the interval [0, upper] into d · n
equal buckets, we have δ < 5

d·n . Using this δ bound in Equation 8,
we have JQ− ĴQ < e

5
4·d − 1. By setting d ≥ 200, the bound is

JQ− ĴQ < 0.627% < 1%.

4.5 Incorporation of Prior
In the previous section, we have assumed a prior α = 0.5.

Here, we drop this assumption and show how we can adapt our
approaches to a generalized prior α ∈ [0, 1], given by the task
provider. By Theorem 3, it turns out this is equivalent to com-
puting JQ(J ′, BV, 0.5), where J ′ is obtained by adding a worker
(with quality α) to J :

THEOREM 3. Given α and J , JQ(J,BV, α) =
JQ(J ′, BV, 0.5), where J ′ = J ∪ {jn+1} and qn+1 = α.

Due to lack of space, interested readers can refer to technical re-
port [15] for the detailed proof.

Thus we can use Algorithm 1 for any prior α, by adding to the
jury a pseudo-worker of quality α. Moreover, the approximation
error bound proved in Section 4.4 also holds.

In summary, to compute JQ(J,BV, α), we have developed an
approximation algorithm with time complexity O(d · n3), with an
additive error bound within 1%, for d ≥ 200.

5. JURY SELECTION PROBLEM (JSP)
Now we focus on addressing J∗ = arg maxJ∈C JQ(J,BV, α),

for C, the set of all feasible juries (i.e., C = {J | J ⊆ W ∧∑n
i=1 ci ≤ B}).
Before formally addressing JSP, we turn our attention to two

monotonicity properties of JQ(J,BV, α): with respect to vary-
ing the jury size (|J |), and with respect to a worker ji’s quality
(qi). These properties can help us solve JSP under certain cost con-
straints.

LEMMA 1 (MONOTONICITY ON JURY SIZE). Given α and J
, JQ(J,BV, α) ≤ JQ(J ′, BV, α), where J ′ = J ∪ {jn+1}.

LEMMA 2 (MONOTONICITY ON WORKER QUALITY).
Given α and J . Let J ′ = J except that q′i0 ≥ qi0 ≥ 0.5 for some
i0, then JQ(J ′, BV, α) ≥ JQ(J,BV, α).

PROOF. Due to space limits, interested reader can refer to tech-
nical report [15] about the proofs for Lemma 1 and 2.

A direct consequence of Lemma 1 is that “the more workers, the
better JQ for BV”. So for the case that each worker will contribute
voluntarily (ci = 0 for 1 ≤ i ≤ N ) or the budget constraint satis-
fies on all subsets of the candidate workersW (i.e.,B ≥

∑N
i=1 ci),

we can select all workers in W .
Lemma 2 shows that a worker with higher quality contributes not

less in JQ compared with a lower quality worker. For the case that
each worker has the same cost requirement c, i.e., ci = cj = c
for i, j ∈ [1, N ], we can select the top-k workers sorted by their
quality in decreasing order, where k = min

{⌊
B
c

⌋
, N
}

.
Although the above two properties can indicate us to solve JSP

under certain conditions, the case for JSP with arbitrary individual
cost is much more complicated as we have to consider not only
the worker ji’s quality qi, but also her cost ci, and both may vary
between different workers.

We can formally prove that JSP is NP-hard in Theorem 4. Note
that JSP, in general, is NP-hard due to the fact that it cannot avoid
computing JQ(J,BV, α) at each step, which is an NP-hard prob-
lem itself. Moreover, even if we assume the existence of a poly-
nomial oracle for computing JQ(J,BV, α) (e.g., Algorithm 1),
the problem still remains NP-hard, as we can reduce a n-th or-
der Knapsack Problem [7] to it. Interested readers can refer to the
technical report [15] for more details.

THEOREM 4. Solving JSP is NP-hard.

5.1 Heuristic Solution
To address the computational hardness issue, we use the simu-

lated annealing heuristic [19], which is a stochastic local search
method for discrete optimization problems. This method can es-
cape local optima and is proved to be effective in solving a variety
of computationally hard problems [5,10].

The simulated annealing heuristic mimics the cooling process
of metals, which converge to a final, “frozen” state. A tempera-
ture parameter T is used and iteratively reduced until it is small
enough. For a specific value of T , the heuristic performs several
local neighbourhood searches. There is an objective value on each
location, and let ∆ denote the difference in objective value be-
tween the searched location and the original location. For each
local search, the heuristic makes a decision whether to “move” to
the new location or not based on T and ∆:

1. if the move will not decrease the objective value (i.e., ∆ ≥
0), then the move is accepted;

2. if the move will decrease the objective value (i.e., ∆ < 0),
the move is accepted with probability exp(−∆

T
), i.e., by

sampling from a Boltzmann distribution [21].

The reason for not immediately rejecting the move towards a worse
location is that it tries to avoid getting stuck in local optima. Intu-
itively, when T is large, it is freer to move than at lower T . More-
over, a large ∆ restricts the move as it increases the chances of
finding a very bad case.

We can apply the simulated annealing heuristic to solve JSP in
Algorithm 3 by assuming that each location is a jury set J ⊆ W
and its objective value is JQ(J,BV, α). What is important in sim-
ulated annealing is the design of local search. Before introducing



Algorithm 3 JSP

Input: W = {j1, j2, . . . , jN}, B, N
Output: Ĵ

1: T = 1.0; // initial temperature parameter
2: X = [ x1 = 0, x2 = 0, . . . , xN = 0 ]; // all initialized as 0
3: Ĵ = ∅; // estimated optimal jury set J∗
4: M = 0; // the overall monetary incentive for selected workers
5: H = ∅; // the set containing indexes for selected workers
6: while T ≥ ε do
7: for i = 1 to N do
8: randomly pick an index r ∈ {1, 2, . . . , N};
9: if xr = 0 and M + cr ≤ B then

10: xr = 1; M = M + cr ;
11: Ĵ = Ĵ ∪ {jr}; H = H ∪ {r};
12: else
13: X,M, Ĵ,H = Swap(X,M, Ĵ,H, r,B,N);
14: T = T/2; // cool the temperature
15: return Ĵ ;

Algorithm 4 Swap

Input: X, M, Ĵ, H, r, B, N

Output: X, M, Ĵ, H

1: if xr = 0 then
2: randomly pick an index k ∈ H;
3: a = k ; b = r ; // store the index
4: else
5: randomly pick an index k ∈ {1, 2, . . . , N}\H;
6: a = r ; b = k ; // store the index
7: if M − ca + cb ≤ B then
8: ∆ = EstimateJQ( Ĵ \ {ja} ∪ {jb} )− EstimateJQ(Ĵ);
9: if ∆ ≥ 0 or random(0, 1) ≤ exp(−∆

T
) then

10: xa = 0; xb = 1; M = M − ca + cb;
11: Ĵ = Ĵ \ {ja} ∪ {jb}; H = H\{a} ∪ {b};
12: return X, M, Ĵ, H

our design of local search, we first explain some variables to keep
in Algorithm 3: H is used to store the indexes of selected workers,
M is used to store their aggregated cost, andX = [x1, x2, . . . , xN ]
is used to keep the current state of each worker (xi = 1 indicates
that worker ji is selected and 0 otherwise). Starting from an initial
X , we iteratively decrease T (step 14) until T is small enough (step
6). In each iteration, we perform N local searches (steps 7-13), by
randomly picking an index r out of the N worker indexes. Based
on the randomly picked xr , we either select the worker if adding
the worker does not violate the budget B (steps 9-11), or execute
Swap, which is described in Algorithm 4. The decision to swap is
made based on different xr values:

1. if xr = 0, a randomly picked worker k ∈ H is replaced
with worker r if the replacement does not violate the budget
constraint and the move is accepted based on ∆ and T ;

2. if xr = 1, the algorithm performs similarly to the above
case, and it replaces worker r with a randomly picked worker
k ∈ {1, 2, · · · , N}\H if the budget constraint still satisfies
and the move is accepted as above.

While the heuristic does not have any bound on the returned jury
(Ĵ) versus the optimal jury (J∗), we show in the experiments (Sec-
tion 6) that it is close to the optimal by way of comparing the real
and estimated JQ (i.e., JQ(Ĵ , BV, α) and JQ(J∗, BV, α)).

6. EXPERIMENTAL EVALUATION
In this section we present the experimental evaluation of JQ and

JSP, both on synthetic data and real data. For each dataset, we first

evaluate the solution to JSP first, and then give detailed analysis
on the computation of JQ. The algorithms were implemented in
Python 2.7 and evaluated on a 16GB memory machine with Win-
dows 7 64bit.

6.1 Synthetic Dataset

6.1.1 Setup
First, we describe our default settings for the experiments. Sim-

ilar to the settings in [7], we generate each worker ji’s quality
qi and cost ci via Gaussian distributions, i.e., qi ∼ N (µ, σ2)
and ci ∼ N (µ̂, σ̂2). We also set parameters following [7], i.e.,
µ = 0.7, σ2 = 0.05, µ̂ = 0.05 and σ̂2 = 0.2. By default,
B = 0.5, α = 0.5 and the number of candidate workers in W is
N = 50. For JSP (Algorithm 3), we set ε = 10−8; for JQ com-
putation (Algorithm 1), we set numBuckets = 50. To achieve
statistical significance of our results, we repeat the results 1,000
times and report the average values.

6.1.2 System Comparison
We first perform the comparison of JSP with previous works,

in an end-to-end system experiment. Cao et al. [7] is the only
related algorithm we are aware of, which solves JSP under the
MV strategy in an efficient manner. Formally, it addresses JSP as
arg maxJ∈C JQ(J,MV, 0.5). We denote their system as MVJS
(Majority Voting Jury Selection System) and our system (Figure 1)
as OPTJS (Optimal Jury Selection System). We compare the two
systems by measuring the JQ on the returned jury sets.

The results are presented in Figure 6. We first evaluate the
performance of the two systems by varying µ ∈ [0.5, 1] in Fig-
ure 6(a), which shows that OPTJS always outperforms MVJS, and
OPTJS is more robust with low-quality workers. For example,
when µ = 0.6, the JQ of OPTJS leads that of MVJS for 5%. By
fixing µ = 0.7, Figure 6(b)-(d) respectively vary B ∈ [0.1, 1],
N ∈ [10, 100], σ̂ ∈ [0.1, 1] and compare the performance of MVJS
and OPTJS, which all show that OPTJS consistently performs bet-
ter than MVJS. In Figure 6(b), OPTJS on average leads around 3%
compared with MVJS for different B; in Figure 6(c), OPTJS is bet-
ter than MVJS, especially when the number of workers is limited
(say when n = 10, OPTJS leads MVJS for more than 6%); in
Figure 6(d), compared with MVJS, OPTJS is more robust with the
change of σ̂.

In summary, OPTJS always outperforms MVJS and, moreover, it
is more robust with (1) lower-quality workers, (2) limited number
of workers and (3) different cost variances.

6.1.3 Evaluating OPTJS
Next, we test the approximation error of Algorithm 3 by fixing

N = 11 and varying B ∈ [0.05, 0.5]. Because of its NP-hardness,
J∗ is obtained by enumerating all feasible juries. We record the op-
timal JQ(J∗, BV, 0.5) and the returned JQ(Ĵ , BV, 0.5) in Fig-
ure 7(a). It shows that the two curves almost coincide with each
other. As mentioned in Section 6.1.1, each point in the graph is
averaged over repeated experiments. Thus, we also give statis-
tics of the difference JQ(J∗, BV, 0.5) − JQ(Ĵ , BV, 0.5) on all
the 10,000 experiments considering different B (B changes in
[0.05, 0.5] with step size 0.05) in Table 3, which shows that more
than 90% of them have a difference less than 0.01% and the maxi-
mum error is within 3%.

Our next experiment is to test the efficiency of Algorithm 3. We
set B = 0.5 and vary N ∈ [100, 500]. The results are shown in
Figure 7(b). We observe that the running time increases linearly
with N , and it is less that 2.5 seconds even for high numbers of



workers (N = 500). It is fairly acceptable in real situations as the
JSP can be done offline.

Table 3: Counts in different error ranges
% [ 0, 0.01 ] (0.01, 0.1] (0.1, 1 ] (1, 3 ] (3,+∞)

Counts 9301 231 408 60 0

6.1.4 JQ Computation
We now turn our attention to the computation of JQ, which is an

essential part of OPTJS. We denote here by n the jury size.
We first evaluate the optimality of BV with respect to JQ. Due

to the fact the computing JQ in general is NP-hard, we set n = 11
and evaluate JQ for four different strategies: two deterministic ones
(MV-Majority Voting, and BV-Bayesian Voting), and two random-
ized ones (RBV-Random Ballot Voting4 and RMV-Randomized
Majority Voting). We vary µ ∈ [0.5, 1] and illustrate the resulting
JQ in Figure 8(a). It can be seen that the JQ for BV outperforms
the others. Moreover, unsurprisingly, all strategies have their worst
performance for µ = 0.5 as the workers are purely random in that
case. But when µ = 0.5, BV also performs robust (with JQ 93.3%),
the reason is that other strategies are sensitive to low-quality work-
ers, while BV can wisely decides the result by leveraging the work-
ers’ qualities. Finally, the randomized version of MV, i.e., RMV,
performs not better than MV for µ ≥ 0.5, as randomized strategies
may improve the error bound in the worst case [23]. The JQ under
RBV always keeps at 50% since it is purely random.

To further evaluate the performance of different strategies for
different jury sizes, and for a fixed µ = 0.7, we vary n ∈ [1, 11]
and plot the resulting qualities in Figure 8(b). The results show that
as n increases, the JQ for the two randomized strategies stay the
same and BV is the highest among all strategies. To be specific,
when n = 7, the BV is about 10% better than MV. In summary,
BV performs the best among all strategies.

Having compared the JQ between different strategies, we
now focus on addressing the computation of JQ for BV, i.e.,
JQ(J,BV, 0.5) in Figure 9. We first evaluate the effect of the qual-
ity variance σ2 with varying mean µ in Figure 9(a). It can be seen
that JQ has the highest value for a high variance when µ = 0.5. It’s
because under a higher variance, worker qualities are more likely
to deviate from the mean (0.5), and so, it’s likely to have more
high-quality workers.

Then we address the effectiveness of Algorithm 1 for approxi-
mating the real JQ. We first evaluate the approximation error in Fig-
ure 9(b) by varying numBuckets ∈ [10, 200]. As can be seen, the
approximation error drops significantly with numBuckets, and is
very close to 0 if we have enough buckets. In Figure 9(c) we plot
the histogram of differences between the accurate JQ and the ap-
proximated JQ (or JQ − ĴQ) over all repeated experiments by
setting numBuckets = 50. It is heavily skewed towards very low
errors. In fact, the maximal error is within 0.01%.

Finally, we evaluate the computational savings of the prun-
ing techniques of Algorithm 1 by varying the number of workers
n ∈ [100, 500] in Figure 9(d). The pruning technique is indeed
effective, saving more than half the computational cost. More-
over, it scales very well with the number of workers. For example,
when n = 500, the estimation of JQ runs within 2.5s without prun-
ing technique, while finishing within 1s facilitated by the proposed
pruning methods.

6.2 Real Dataset
4RBV randomly returns 0 or 1 with 50%.

6.2.1 Dataset Collection
We collected the real world data from the Amazon Mechanical

Turk (AMT) platform. AMT provides APIs and allows users to
batch multiple questions in Human Intelligence Tasks (HIT). Each
worker is rewarded with a certain amount of money upon complet-
ing a HIT. The API also allows to set the number of assignments
(denoted m) to a HIT, guaranteeing it can be answered m times by
different workers. To generate the HITs, we use the public senti-
ment analysis dataset5, which contains 5,152 tweets related to var-
ious companies. We randomly select 600 tweets from them, and
generate a HIT for each tweet, which asks whether the sentiment of
a tweet is positive or not (decision making task). The ground truth
of this question is provided by the dataset. The true answers for yes
and no is approximately equal, so we set the prior as α = 0.5.

To perform experiments on AMT, we randomly batch 20 ques-
tions in a HIT and set m = 20 for each HIT, where each HIT is
rewarded $0.02. After all HITs are finished, we collect a dataset
which contains 600 decision-making tasks, and each task is an-
swered by 20 different workers. We give several statistics on the
worker answering information. There are 128 workers in total, and
each of them has answered on average 600×20

128
= 93.75 questions.

Only two workers have answered all questions and 67 workers have
answered only 20 questions. We used these answers to compute ev-
ery worker’s quality, which is defined as the proportion of correctly
answered questions by the worker in all her answered questions.
The average quality for all workers is 0.71. There are 40 workers
whose qualities are greater than 0.8, and about 10% whose quality
is less than 0.6.

6.2.2 JSP
To evaluate JSP, for each question, we form the candidate work-

ers set W by collecting all 20 workers who answered the question,
i.e., having N = |W | = 20. We follow the settings in experiments
on synthetic data except that worker qualities are computed using
the real-world data. We then solve JSP for each question by vary-
ing B ∈ [0.1, 1.0], N ∈ [3, 20] and σ̂ ∈ [0, 1]. We compute the
average returned JQ by solving JSP for all 600 questions, which is
recorded as a point in Figures 10(a)-(c), respectively. It can be seen
that Figure 10(a)-(c) has a similar results pattern as Figure 6(b)-
(d), i.e., experimental results on the synthetic datasets. Especially,
OPTJS always outperforms MVJS in real-world scenarios.

6.2.3 Is JQ is a good prediction?
Finally, we try to evaluate whether JQ, defined in Definition 3,

is a good way to predict the quality for BV in reality. Notice that,
after workers give their votes, we can adopt BV to get the voting re-
sult, and then compare it with the true answer of the question. And
thus, the goodness of BV in reality can be measured by the “accu-
racy”, which counts the proportion of correctly answered questions
according to BV.

We now test whether JQ is a good prediction of accuracy in re-
ality. For each question, we vary the number of votes (denoted as
z). For a given z ∈ [0, 20], based on the question’s answering se-
quence, we collect its first z votes, then
(i) for each question, knowing the first z workers who answered
the question, we can compute the JQ by considering these workers’
qualities. Then we take the average of JQ among all 600 questions;
(ii) by considering the first z workers’ qualities who answered the
question and their votes, BV can decide the result of the question.
After that, the accuracy can be computed by comparing voting re-
sult and the true answer for each question.

5http://www.sananalytics.com/lab/twitter-sentiment/
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Figure 10: Real dataset evaluation

Now given a z ∈ [3, 20], we compare the average JQ and ac-
curacy in Figure 10(d), which shows that they are highly similar.
Hence, it verifies that JQ for BV is really a good prediction of ac-
curacy for BV in reality.

7. EXTENSIONS TO VARIOUS TASK
TYPES AND WORKER MODELS

Previously we have talked about how to solve JSP under our
data model. Note that we have made two assumptions: (1) it is
a decision-making task with binary answer, and (2) each worker’s
quality is modeled as a constant. However, in reality, it is com-
mon for task provider to ask multiple-choice tasks. For example,
sentiment analysis tasks [25] require workers to label the senti-
ment (positive, neutral, or negative) of each task. In addition,
the worker’s quality can be modeled by measuring the sensitivity
and specificity of each possible answer [45], or the confusion ma-
trix (CM) [18]. Specifically, a confusion matrix C is a matrix of
size `× ` where each element Cjk encodes the probability that the
worker votes for k when the true answer is j.

Our proposed algorithms can be easily extended to support these
variants. Due to the space limits, we only outline our basic ideas for
these extensions, and interested readers are recommended to refer
to our technical report [15] for more details.

We first clarify some notations for multiple-choice task. Note
that for a task with ` possible choices, denoted as {0, 1, . . . , `−1},
and there exists one unknown true answer 6 t ∈ {0, 1, . . . , `− 1}.
The domain of the voting from a jury J is V ∈ Ω = {0, 1, . . . , `−
1}n. Moreover, the prior is now a vector ~α = {α0, α1, . . . , α`−1}
s.t.
∑`−1
j=0 αj = 1.

Following the same solution framework, we first briefly show
that BV is still the optimal voting strategy with respect to JQ under
this general model, and then sketch how to extend the JQ computa-
tion. Finally the extensions for JSP is addressed.

Optimal Strategy Extension:

6For the case that each task can have multiple true answers,
we can follow [30], which decomposes each task into ` decision-
making tasks, and publish these ` tasks to workers.



To prove the optimality of BV for more general task here, we can
follow the same flow as in Section 3.3. Similar to Equation 4, here
E[1{S(V)=t}] can be expressed as:∑

V ∈Ω

∑`−1

t=0
Pr( t = t ) · Pr( V | t = t ) · E[ 1{S(V )=t} ]. (9)

For a given V ∈ Ω, as

(E[ 1{S(V )=0} ],E[ 1{S(V )=1} ], . . . ,E[ 1{S(V )=`−1} ])

defines a discrete probability distribution, it is not hard to prove that
the optimal strategy, or S∗(V ) is

S∗(V ) = arg max
t′∈{0,1,...,`−1}

αt′ · Pr(V | t = t′), (10)

which corresponds to the Bayes’ Theorem [3] that chooses the re-
sult as the label t∗ with highest posterior probability, i.e., t∗ =
arg max t′∈{0,1,...,`−1} Pr(t = t′ | V ). Thus S∗ = BV .

Jury Quality Computation Extension:
Recall the definition of JQ in Equation 9, to facilitate our under-

standing, we express E[1{S(V)=t}] in the following way∑`−1

t′=0
αt′ ·

[ ∑
V ∈Ω

Pr( V | t = t′ ) · E[ 1{BV (V )=t′} ]
]

(11)

This representation enables us to consider each possible true an-
swer separately. For each t′ ∈ {0, 1, . . . , `− 1}, we compute

H(t′) =
∑

V ∈Ω
Pr( V | t = t′ ) · E[ 1{BV (V )=t′} ]

and then linearly combines the computed H(t′) with ~α to get JQ.
So the question falls to the computation of H(t′).

To compute H(t′), for a V ∈ Ω, we have to keep track of
(1) whether BV (V ) = t′ or not, and
(2) if BV (V ) = t′, the value Pr(V | t = t′) should be added.
Similar to the analysis in Section 4.2, we apply an iterative ap-
proach, where in each iteration, we expand J with one more
worker. We develop a map structure with (key, prob) pairs to store
the above two mentioned information. The key is an `-tuple(

ln
Pr(V | t = t′) · αt′
Pr(V | t = 0) · α0

, . . . , ln
Pr(V | t = t′) · αt′

Pr(V | t = `− 1) · α`−1

)

where the i-th element of the tuple is ln
Pr(V | t=t′)·αt′

Pr(V | t=i−1)·αi−1
. Intu-

itively, given a V ∈ Ω, ifBV (V ) = t′, then Pr(V | t = t′) ·αt′ ≥
Pr(V | t = t) ·αt for any t ∈ {0, 1, . . . , `− 1}, which means that
the elements in the stored tuple are all ≥ 0. The value prob corre-
sponding to a key is the aggregated probability Pr(V | t = t′) for
the same state. In the k-th iteration, the V k = {0, 1, . . . , ` − 1}k,
for a key, we will generate ` new keys corresponding to different
votes, and update their individual prob for the next iteration. After
n iterations, based on identifying the keys whose elements are all
≥ 0, we can get JQ by aggregating the corresponding probs.

Since the values of elements in a tuple are unbounded, we can
follow the similar idea in Section 4.3, that is to map each worker’s
vote to a bucket number. Note that each element in the tuple can
be decomposed as the summation of individual worker’s vote, thus
the number of states in keys are bounded.

Jury Selection Problem Extension:
To address JSP, similarly we can prove that the monotonicity on

jury size by extending Lemma 1, which means that “the more work-
ers, the better JQ" still holds for more general case. As the worker
is modeled as a confusion matrix (with size ` × `), the extension
for Lemma 2 is non-trivial, and it stills remains an open question
on what kind of confusion matrix will contribute more to the JQ.

Previous works [18,34] have addressed how to rank workers (or to
detect spammers in all workers) based on their associated confusion
matrices, which may provide good heuristics for us.

For more general cost models where each worker requires arbi-
trary costs, the simulated annealing heuristic regards computing JQ
as a black box, so it can be simply extended here.

8. RELATED WORKS
Crowdsourcing. Nowadays, crowdsourcing has evolved as a prob-
lem solving paradigm [6] to address computer-hard tasks. To incor-
porate the crowd into query processing, crowdsourced databases
(e.g., CrowdDB [14], Deco [31], Qurk [27] and CDAS [25]) are
built, compared with traditional database systems, they do not hold
the closed-world assumption. As a novel paradigm, the power of
crowdsourcing has also been leveraged in other applications. For
example, in Optical Character Recognition [38], Entity Resolu-
tion [39,41], Tagging [43], Schema Matching [17,44], Web Table
Understanding [12], Data Cleaning [40] and so on.

Voting Strategy. In order to aggregate the collective wisdom of
a jury, given some specific voting of a task from the jury, voting
strategies are widely used to return a result, which is an estimation
of the ground truth for the task. For example, Majority Voting strat-
egy [7] strictly returns the answer corresponding to higher votes,
and Random Ballot Voting [33] randomly selects the returned re-
sult. Similarly other strategies [2,9,23–25,28,29] are also talked
about in a great deal. Different from their works, here we give
a systematic way to classify all the strategies into two categories,
and try to observe the optimal strategy in all these strategies under
the Jury Selection Problem. Note that different from our problem,
people may evaluate strategies under different purposes. For ex-
ample, [26] analyzes the optimal Bayesian manipulation strategies
by assessing the expected loss in social welfare, and [11] applies
Bayesian model to take a game-theoretic approach in characteriz-
ing the symmetric equilibrium of the game with juries.

Worker Model. To model a worker’s quality in crowdsourcing,
most existing works [7,25,28,44] define it as a constant parameter
indicating the probability that the worker correctly answers a ques-
tion, while other work [18] defines it as a confusion matrix, which
tries to capture relations between labels in questions and is specific
to choices in tasks. For the methods to derive worker’s quality, a
normal way is to leverage the answering history. If they are not suf-
ficient, [25] hides golden questions (questions with known ground
truth) and derive the quality based on the worker’s answers for
them, while other work [18] applies Expectation Maximization [8]
algorithm to iteratively updates worker’s quality until convergence.
For micro-blog services especially in Twitter, the retweet actions
are usually explored to derive the error rate for each worker [7]. In
our work we define worker’s quality by a constant parameter (com-
monly used by existing works) and assume that they are known
in advance. Moreover, we also extend our method to address the
confusion matrix mentioned in [18].

Online Processing. There are also some online processing sys-
tems [4,16,25] in crowdsourcing, which addresses how to assign
tasks to workers and process the workers’ answers. For exam-
ple, [25] proposes quality-sensitive answering model and terminate
assigning questions which has got confident answers; [4] proposes
an entropy-like approach to define the uncertainty of each question
and assigns questions with highest uncertainty; [16] proposes cost-
sensitive model to address which questions are better answered by
humans or machines. Different from them, we especially evalu-



ate how to estimate the JQ before the workers are selected to an-
swer the questions, and the quality estimation can provide statistics
and guidance for the task publisher to wisely invest budget. Even
though existing work [25,28] tried to estimate the quality, they as-
sume that each worker is of the same quality.

Expert Team Formation. In social network, several works [13,22]
studied the problem of expert team formation, that is, given the ag-
gregated skill requirements for a task, how to find a team of experts
with minimum cost (communication cost or individual financial re-
quirement), such that the skill requirements are satisfied. Rather
than the skill requirements in [13,22], we focus on the probability
of drawing a correct answer, which requires to enumerate exponen-
tial number of possibilities and is indeed challenging. In fact we ad-
dress the Jury Selection Problem, which is firstly proposed by [7].
But we find that the solution is sub-optimal in [7], which cannot
leverage the known quality for workers. We formally address the
optimal JSP problem in the paper. Some other works [9,35] also
talk about how to wisely select sources for integration. The differ-
ence is that we assume the workers are given a multiple-label task
and the worker model is known, while in their problem setting, the
possible answers from different sources are not restricted, and the
sources’ exact real qualities are unknown in advance.

9. CONCLUSIONS
In this paper, we have studied Jury Selection Problem (JSP) for

decision-making tasks, whose objective is to choose a subset of
workers, such that the probability of having a correct answer (or
Jury Quality, JQ) is maximized. We approach this problem from an
optimality perspective. As JQ is related to voting strategy, we prove
that an existing strategy, called Bayesian Voting Strategy (BV) is
optimal under the JQ. Although computing JQ under BV is NP-
hard, we give an efficient algorithm with theoretical guarantees.
Moreover, we incorporate the task provider prior information, and
we show how to extend JQ computation for different worker mod-
els and task types. Finally we evaluate JSP under BV, we prove
several properties which can be used for efficient JSP computa-
tions under some constraints, and provide an approximate solution
to JSP by simulated annealing heuristics.
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