
Architectures for massive data 
management

Key-value stores and Redis
Ioana Manolescu , Silviu Maniu

INRIA Saclay & Ecole Polytechnique
Université Paris-Sud

ioana.manolescu@inria.fr , silviu.maniu@lri.fr
http://pages.saclay.inria.fr/ioana.manolescu/

https://silviu.maniu.info/

M2 Data and Knowledge, 2018/2019
Université Paris Saclay 

1

mailto:Ioana.manolescu@inria.Fr
mailto:silviu.maniu@lri.fr
http://pages.saclay.inria.fr/ioana.manolescu/
https://silviu.maniu.info/


Key-value stores

• Relatively recent class of systems, developed as 

part of the NoSQL movement

• Main idea:

Trade simplicity for speed and scale

Extremely simple data model

– key=short byte sequence / integer

– value=byte sequence (may recognize integers)

• No QL. Operations:  PUT(k, v) and GET(k,v)
• ACID properties depending on the system; at least 

atomic PUT and GET

– Some are in-memory thus no durability at all



Key-value data models

• Simplest model:
– One key – one value

• Extensions:
– Organization: key-value pairs belong to 

« collections » or « databases » or « tables »
–Multiplicity: set or list of values
– Internal structure:

• One key – a list of attributes
• Each attribute has a name and a value / set of values



Sample key-value data model: 
DynamoDB

• Provided by Amazon Web Services (AWS)

• Naming may vary (there is no standard). See doc.
• Although it is called « table », items in the same table 

may have nothing in common!
• The interface is very similar to the so-called « Big

Tables » (to be seen) 

table+ item+

key

attribute+

name

value



Redis: one of the most popular key-
value stores

• Data model:
– Hash (a set of key-value pairs on the same key)
– List
– Set
– Values cannot be lists nor sets (no nesting!)
– Databases

• Operations:
– Put, get
– Set operations (union, intersection)
– List operations: left/right push/pop (àqueue / stack)
– Arithmetic operations (attempts type conversion to 

integers)



Redis: lab

• Install Redis, launch it (https://redis.io/topics/quickstart)
• Follow the tutorial to learn the available commands

(https://try.redis.io)
• Write in Redis a toy application of a database of books which

can be borrowed in a library. 
– All books have an ISBN, a title and an author. 
– Books may also have other properties, e.g. language, publication 

year, edition... (up to you)
– Make books expire after a while (if no one borrows the book)
– If someone borrows a book (by, e.g., setting a certain field in the 

data) then make the book refresh its expiry date
– Make a Redis client subscribe to books by a certain author
– A tutorial implementing a Twitter clone can be found at 

https://redis.io/topics/twitter-clone

https://redis.io/topics/quickstart
https://try.redis.io/
https://redis.io/topics/twitter-clone


Redis: task

• With the help of a programming language interface to 
Redis (Python https://pypi.org/project/redis/, Java 
https://github.com/xetorthio/jedis, others at 
https://redis.io/clients), create a publish-subscribe
news system, which:
– (server) indexes a newly published item by the words in its

description, publish a channel for each indexed word
containing only the IDs of the news

– (client) subscribes to news having certain keywords, 
retrieve the corresponding IDs and show the full text of the 
news

• Individual homework: deadline October 5th, midnight; 
source code and short report by mail to 
silviu.maniu@lri.fr

https://pypi.org/project/redis/
https://github.com/xetorthio/jedis
https://redis.io/clients
mailto:silviu.maniu@lri.fr

