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XML Type Detfinition
[ anguage

XML type definition language: a way to specify a
certain subset of XML document — a type

* specification should be simple: a validator should
be built automatically and efticiently



DTD: Syntax

« <!ELEMENT elem_name elem_regexp>— an
element named e lem _name contains elements

described by the regular expression
elem_regexp

* <!ATTLIST elem_name att_name att_type att _values>
— the element elem name has an attribute named
att_name of type att_type and having possible
values described by att_values



DTD: Syntax

* regular expressions are formed of *,+,7, sequence
[, 1, EMPTY, ANY, #PCDATA (text)

o attribute types are ID (primary key), IDREF (foreign
key), CDATA (text), v1|v2],..,vn (fixed value list)

e attribute values are v (default value), #REQUIRED
(mandatory attribute), #IMPLIED (optional
attribute), #FIXED v (constant value v)




DID




Mixed Content

 Mixed contend described by a repeatable OR
group (between |):

(#PCDATA | element-name | .. )

 #PCDATA must be first followed by O or more
elements — can be repeated multiple times



DI1D: Regular Expressions

* most interesting part of DTD — matching regular
expressions on the contents

<!ELEMENT person

(name, title?, addressx, (fax|tel)s,
emailx) >



DI1D: Regular Expressions

* The sequence of children labels has to match its
regular expression content model:

<IDOCTYPE a [
<I!ELEMENT a (b, c*, a?)>
<!ELEMENT b (#PCDATA) >
<!ELEMENT c¢ (d, d+) >
<!ELEMENT d (#PCDATA) >

C a
_______________ - oo
| TN
Text d d d/d\d b
| | | |

Text Text Text Text Text Text



Questions to Answer

1. What is a regular expression”? How can we match a
string against it?

2. What is a finite-state automaton?
3. What is a deterministic regular expression”

4. What is an T-unambiguous regular expression



Regular Expressions

meaning

tag/element a occurs
expression el is followed by expression e2
O or more occurrences of e
optional — O or 1 occurrences of e
1 or more occurrences of e

el or e?

grouping



Regular Expressions

very useful for defining programming language
syntax

in various Unix tools (grep), text editors (vim,
emacs, ...)

classical concept in CS (starting from Kleene, 50s)



Implementing RES

* input: RE e, string s; output: does s match e?

e construct a non-deterministic or deterministic
finite-state automaton (FA) &= (abjpyaa

s = abbaaba



Implementing RES

* input: RE e, string s; output: does s match e?

e construct a non-deterministic or deterministic
automaton

e = (ab|b)*a*a

s = abbaaba



Implementing RES

* evaluation on a deterministic FA can be done In
inear time (in the size of the string | S|) and In
constant space (size of the FA = number of states)
- how?




Implementing RES

* a non-deterministic FA can be transformed to a
deterministic FA — but in exponential space;
meaning that evaluation is not efficient

e for a deterministic FA one can build a minimal

unigue equivalent FA — equivalence between FAs
IS easy to check



D1Ds and RES

W3C requires that the RE specified in DTD must be
deterministic:

e cvaluation is efficient if element-type definitions are
deterministic

* resulting automaton = Glushkov automaton

* states = positions of the regular expression

(semantic actions); transitions = based on the
“follows set”



D1Ds and RES

XML specification: regular expressions are deterministic
(1-unambiguos)

unambiguous = each word (string) is witnessed by at most

one sequence of positions of symbols in the expression

that matches the word [Brugemann-Klein, Wood 1998
ambiguous: (a|b)*aa*

equivalent unambiguous: (a|b)*a



D1Ds and RES

* |s it enough for expressions to be only
unambpiguous?

* No = an expression can be unambiguous but the
matching decision has to be done by looking at
more states in advance

(alb)*a

* without looking beyond the current symbol = 1-
unambiguous



Glushkov Automaton

Can we recognize deterministic FAs? [Brigemann-
Klein, Wood 1998]

+ areqgular expression is deterministic iff its Glushkov
automaton is deterministic

- the Glushkov automaton can be computed in time
guadratic in the size of the regular expression



Glushkov Automaton

e character iIn RE = state in an automaton + one state
of the beginning of the RE

* transitions show which characters can precede
each other; incoming labels can only be the labels
of the state

» construction is quadratic time O(m?)



Glushkov Automaton

e \What is the Glushkov automaton for:

a(blc)(b|d)*



DTD: Validation Using FA

General algorithm for DTD (top-down):

1. for each <!ELEMENT... create its deterministic
automaton A

2. for each element in document D, match the
children using its corresponding automaton

3. If one does not match = document invalid

4. if all match = document valid



DTD: Validation Using FA

Why does this work?

e |abel-guarded subtree exchange property = trees obtained
by exchanging the subtrees rooted at vl and v2 are in the
same languages if v1 and v2 have the same label lab

t1 t2

v1 V2




D D Validation: Example

<a>
<a>
<a />
</a>
<b>
<e />
<f />
<g /> <!'ELEMENT

/> <! ELEMEN

<e /> <!ELEMENT
So <!ELEMENT

<e />

<d /> <!ELEMENT
</C> <!ELEMENT

<b>
SN <!ELEMENT
<q />

</b>

<b>
<e />
<f />

</b>

</a>

(a,(b|c)x)>
(e, f?, g?)>
(e+, d)>
EMPTY>
EMPTY>
EMPTY>
EMPTY>

QO - QAN O



D 1D: Limits

» DID is compact, easy to understand, easy to validate
(with the W3C restrictions...)

e But:

1. itis not in XML (dealing with another language)

2. no distinguishable types (everything is characters)
3. no value constraints (cardinality of sequences)

4. no built-in scoping (elements only used in subtrees)



XML Schema



XML Schema

W3C Standard — schema description language that
goes beyond the capabillities of the DTD

XML Schema specifications are XML documents
themselves

XML Schema has built-in data types (based on Java
and SQL types)

control over the values a data type can assume

users can define their own data types



XML Schema Constructs

» declaring an element (by default, can only contain string values)
<xsd:element name=“author" />

* bounded occurrences (absence of minOccurs / maxOccurs implies
once)

<xsd:element name=“address'" minOccurs=“1"
max0ccurs=“unbounded” />

e types (considered atomic with respect to the schema)
<xsd:element name=“year" type=“xsd:date” />

other types: string, boolean, number, float, duration, time, base64binary,
AnyURI, ...



XML Schema Constructs

* non atomic complex types are built from simple types using type
constructors

<xsd:complexType name=“Persons'>
<xsd:sequence>

<xsd:element name=“person' minOccurs=“0"
max0ccurs=“unbounded” />

</xsd:sequence>
</xsd:complexType>

<xsd:element name=“persons" type=“Persons" />



XML Schema Constructs

* new complex types can be derived from an existing type
(see specification)

e attributes are declared within the element
<xsd:element name=“book”>
<xsd:attribute name=“title" />

<xsd:attribute name=“year" type=“xsd:gYear"”/
>

</xsd:element>



XML Schema Example

e \WWhat is the schema of this XML?

<?xml version="1.0" encoding="UJF-8"7>

<books>

<book id="1" title="Theory of Computation'>

<authors>
<author>Michael Sipser</author>

</author>
<publisher>Cengage Learning</publisher>
<year>2012</year>
<edition>3</edition>

</book>

<book 1id="2" title="Artificial Intelligence'>
<authors>

<author>Peter Norvig</author>
<author>Stuart Russell</author>
</authors>
<publisher>Pearson</publisher>
<year>2013</year>
<edition>3</edition>
</book>
</books>



Tree Automata for XML
Validation



Validating XML In General

* FA on strings (words) are very good and very
efficient for DTDs (and, as we will see, for XPath)

* But what about XML schema” Or any other schema
language”

e |s there a formalism / structure that can validate
XML in general?



Tree Automata

Two types:

1. on ranked trees: each node has a bounded
number of children; each XML can be transtormed
by using the first child - next sibling encoding
(more later)

2. on unranked trees: no bound on the number of
children; better suited (directly) to XML,



Binary Iree Automata

Bottom-up non-deterministic tree automata
A non-deterministic bottom-up tree automata is a 4-tuple
A=('",Q,F," ) where
@ ! is an alphabet. We usually distinguish between two disjoint
alphabets : a leaf alphabet (! c5f) and an internal one (! internal)-

@ Q is a set of states.

@ F is a set of accepting states F C Q.

@ " Is a set of transition rules having one of the forms :
| - gwhenl el g5

a(g4,02) -+ qwhena c! jnemal




Binary Iree Automata;
Semantics

e the semantics of automata A are described In
terms of a run

* arun = a mapping from the domain of Q (states)
such that for each p we have r(p) in Q

* arunis accepting iIf the state of the root is one of
the final states



Automata Example

Let A = ({av |}7 {qu q1}7 {qO}v A) where

a(dqe,9d1) ! do
A:# a(qO q) Cl
| d1




Iree Languages

 The language L(A) is the set of trees accepted by
A

A language accepted by a bottom-up tree
automaton is called a regular tree language



lop-Down Iree Automata

Binary top-down tree automata

A non-deterministic top-down tree automata is a 5-tuple
A=(!',Q,IF," ) where

@ ! is an alphabet.

Q is a set of states.

[' Qis a set of initial states.

F is a set of accepting states F! Q.

' Is a set of transition rules having the form :

qg" alg1,qa).
where a# ! and qg,qy, g # Q

®© 6 6 ¢




Top-Down lree Automata:
Semantics

Run

@ A run of top-down automaton A = (! ,Q,/, F," ) on a binary tree t
is a mapping r : dom(t) — Q such that

@ r(!) el;
@ for each node p with label a, rule r(p) — a(r(p.0), r(p.1)) isin™" .

@ A run is accepting if for all leaves p we have r(p) € F.

Deterministic binary top-down automata

We say that a binary tree automaton is (top-down) deterministic if | is
a singleton and for each a <! and g € Q there is at most one
transition rule of the form g — a(qg4, o).




Automata Example

Let A = ({a’ l},{qo,ql},{QO},{Ch},A) where

A = { G ! a(qu qu)
g ! a(qo, qo)

©
olRe
@%\@



Regular [ree Languages

The following statements are equivalent:
| is aregulartree language

e | is accepted by a non-deterministic bottom-up tree
automaton

e | is accepted by a deterministic bottom-up automaton

* | is accepted by a non-deterministic top-down
automaiton



Regular [ree Languages

Generally, the same results as for regular word/string
languages (FA):

* given a tree automaton, one can find an equivalent
bottom-up automaton that is deterministic (with
exponential blowup)

* regular tree languages are closed under
complement, intersection and union



Ranked lree Automata

 We can represent any unranked tree (XML) by a
binary tree where the left child is the first child and
the right child is the next sibling

e Called first-child next-sibling encoding (not the only
one)



XML — Ranked lree

person person

spouse

— 4

data data

T (oo

\ data
(e -

data data

data

data

data data



Relation Between Ranked
and Unranked Tree Automata

* For each unranked tree automaton, there exists a
ranked tree automaton accepting the encoding of
the XML in first child — next sibling

* For each ranked tree automaton, there exists an
unranked tree automaton accepting the unranked
tree seconded from first child — next sibling
encoding




Unranked Bottom-Up Iree
Automata

Non-deterministic bottom-up tree automata

A non-deterministic bottom-up tree automaton is a 4-tuple
A =(X,Q, F,A)where ¥ is an alphabet, Q is a set of states, F C Qis
a set of final states an A is a set of transition rules of the form

alE] — q

where a € X, E is a regular expression over Qand g € Q




Unranked Bottom-Up Iree
Automata: Semantics

LetA =(!,Q,F," ) be an unranked tree automata.

@ The semantics of A is described in terms of runs

@ Given an unranked tree t, arun of A ont is a mapping from
dom(t) to Q where, for each position p whose children are at
positions pO,...,p(n! 1) (withn" 0), we have r(p) = q if all the
following conditions hold :

@ t(p)=a#!,
@ the mapping r is already defined for the children of p, I.e.,

l‘(pO) = Jos - -+ r(p(n ! 1)) = On! 1 and
@ the word go.g1...9n 1 isin L(E).

@ Arunr is successful if r(e) is a final state.



Automata Example

Let A =({a /},{9a. qc. qi}.{qa}.! ) where
!

" algaqi.(gcle)] ! qa

[ [€] I g, Special rule for leaves

f@é’\@



Schemas and Tree
GGrammars

* Schemas for XML documents can be formally
expressed by Regular Tree Grammars (RTG)

Reqgular Tree Grammar (RTG)

A regular tree grammar (RTG) is a 4-tuple G=(N,T,S,P), where :
@ N is a bnite set of non-terminal symbols;
@ T is a Pnite set ofterminal symbols;
@ S iIs a set of start symbols, where S! N and

@ P is a Pnite set of production rules of the form X " a[R], where
X #N,a# T, and R Is a regular expression over N.

(We say that, for a production rule, X is the left-hand side, aR is the
right-nand side, and R is the content model.)




Grammar Example

P4

Dir | directory[Person’ ]

Person ! student[DirA | DirB])
Person! professor[DirB]

DirA! direction[Name.Number?.Add?]
DirB ! direction[Name.Add?.Phone’ ]




Competing Non-Terminals

Two different non-terminals A and B (of the same
grammar G) are said to be competing with each other if:

e a production rule has A In the left-hand side,
e another production rule has B in the left-hand side, and

e these two production rules share the same terminal
symbol in the right-hand side.

Same definition for automata — states are competing if
they have the same label and different transition rules



Grammar Example

P I
Dir | directory[Person’ ] directory [dperson] ! Glir
Person! student[DirA | DirB]) student[qgira | Qairs] ! Qperson
Person ! professor|[DirB] professor [ddirs] !  Qperson
DirA! direction[Name.Number?.Add?] | direction[name-Qnumber ?-Cadd 7] ! Jdira
DirB ! direction[Name.Add?.Phone’ ] direction[Qname-Oadd ?-Opnone] ! Odirs




| ocal Tree Grammar

e A local tree grammar (LTQG) Is a
regular tree grammar that does not
have competing non-terminals

e A local tree language (LTL) is a
language that can be generated by
at least one LTG



Grammar Example

Ps

Az

Dir — directory[Student .Professor |
Student — student[Name.Number?.Add?]
Professor — professor[Name.Add?.Phone' ]

directory[Qsuq-Qpror) — Qi
student|[Qname-Qnumber?- qadd ?] — Qstud
pI‘OfeSSOI‘[qname .Qadd ?. thone] — qpl‘Of




Single-Type Tree Grammar

A single type tree grammar (STTG) Is a regular tree
grammar, where:

e for each production rule, non terminals in its regular
expression do not compete with each other, ana

e start symbols do not compete with each other.

A single-type tree language (STTL) is a language that an
be generated by at least one STTG.



Grammar Example

P2 AZ
Dir — directory[Person | directory[Qperson] — Qir
Person — student|DirA]) student|[Qairal — Qperson
Person — professor|DirB] professor|qairs] — Qperson
DirA — direction|[Name.Number?.Add?] | direction|Qname-Qnumber?-Qadd?] — Qaira
DirB — direction|[Name.Add?.Phone' | direction|Qname.Qada? - Qphone] — Qaira




Classes of Regular
. anguages

LTL C STTL C RTL

e | TL and STTL are closed under intersection but not

union; RTL closed under union, intersection and
difference



XML Schema Languages

Grammar Schema Language

LTG DTD

STTG XML Schema

RTG RelaxNG



General Validation Algorithm

A run associates to each position p in the XML document
a set of states in Q such that:

1. there exists a transition rule to a state in Q from a
label a

2. the labelatpis a

3. the string of the children labels matches the RE in the
transition rule

A run is successful if it contains at least one final state.



Simplitied Versions for
L TG and STTG

 LTG: the sets of states are always singletons, only
one rule for each label

 STT@G: the results of a run can consider just a single
type for each node of the tree



Validation Example

€
Shop

d//////// ~\\\\\\\1

Customer Invoice
. . Ol 02 _ 10
1dCust 1idInvoices Name ivoiceNb
000 010 020 100
Jdata ddata Jdata Qdata

Shop, (®7 (Z))’ qz’ustomerq?nvoz’ce — QShop

C'ustomer,

({QidC’ust}a {Qidlnvoices})n dName
— qCustomer

Invoice, ({Qinvoicer}a @), 0 — dInvoice

idC’U,St, (®7 (b)a ddata — 4idCust
idlnvoices, ((Z)a (Z))a ddata — 4idInvoices

Name, (Qa ®)7 Qdata = QName
in'UO'I;CQNba ((Z)a (Z))a ddata — Y9invoiceNb



Slide Credits

* Validation Using Trees: structure&examples from
Mirian Hayfield Ferrari

* Figures & examples in slides 8, 12, 13, 24 from C.
Maneth’'s course



