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XML Type Definition 
Language

• XML type definition language: a way to specify a 
certain subset of XML document — a type 

• specification should be simple: a validator should 
be built automatically and efficiently



DTD: Syntax
• <!ELEMENT elem_name elem_regexp> — an 

element named elem_name contains elements 
described by the regular expression 
elem_regexp 

• <!ATTLIST elem_name att_name att_type att_values> 
— the element elem_name has an attribute named 
att_name of type att_type and having possible 
values described by att_values



DTD: Syntax
• regular expressions are formed of *,+,?, sequence 
[,], EMPTY, ANY, #PCDATA (text) 

• attribute types are ID (primary key), IDREF (foreign 
key), CDATA (text), v1|v2|,…,vn (fixed value list) 

• attribute values are v (default value), #REQUIRED 
(mandatory attribute), #IMPLIED (optional 
attribute), #FIXED v (constant value v)



DTD



Mixed Content

• Mixed contend described by a repeatable OR 
group (between |): 

(#PCDATA | element-name | … ) 

• #PCDATA must be first followed by 0 or more 
elements — can be repeated multiple times



DTD: Regular Expressions

• most interesting part of DTD — matching regular 
expressions on the contents 

<!ELEMENT person 

(name, title?, address*, (fax|tel)*, 
email*) >



DTD: Regular Expressions

• The sequence of children labels has to match its 
regular expression content model:

Validating XML Documents Against DTDs

Validating XML Documents Against DTDs

To validate against this DTD . . .
DTD featuring regular expression (RE) content models

1 <!DOCTYPE a [

2 <!ELEMENT a (b, c*, a?)>

3 <!ELEMENT b (#PCDATA) >

4 <!ELEMENT c (d, d+) >

5 <!ELEMENT d (#PCDATA) >

6 ]>

. . . means to check that the sequence of child nodes for each
element matches its RE content model:
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Questions to Answer

1. What is a regular expression? How can we match a 
string against it? 

2. What is a finite-state automaton? 

3. What is a deterministic regular expression? 

4. What is an 1-unambiguous regular expression?



Regular Expressions
meaning

a tag/element a occurs

e1, e2 expression e1 is followed by expression e2

e* 0 or more occurrences of e

e? optional — 0 or 1 occurrences of e

e+ 1 or more occurrences of e

e1 | e2 e1 or e2 

(e) grouping



Regular Expressions

• very useful for defining programming language 
syntax 

• in various Unix tools (grep), text editors (vim, 
emacs, …) 

• classical concept in CS (starting from Kleene, 50s)



Implementing REs
• input: RE e, string s; output: does s match e? 

• construct a non-deterministic or deterministic 
finite-state automaton (FA) e = (ab|b)*a*a

s = abbaaba
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Implementing REs
• input: RE e, string s; output: does s match e? 

• construct a non-deterministic or deterministic 
automaton

e = (ab|b)*a*a

s = abbaaba
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Implementing REs

• evaluation on a deterministic FA can be done in 
linear time (in the size of the string     ) and in 
constant space (size of the FA = number of states) 
- how?

|S |



Implementing REs

• a non-deterministic FA can be transformed to a 
deterministic FA — but in exponential space; 
meaning that evaluation is not efficient 

• for a deterministic FA one can build a minimal 
unique equivalent FA — equivalence between FAs 
is easy to check



DTDs and REs
W3C requires that the RE specified in DTD must be 
deterministic: 

• evaluation is efficient if element-type definitions are 
deterministic 

• resulting automaton = Glushkov automaton  

• states = positions of the regular expression 
(semantic actions); transitions = based on the 
“follows set”



DTDs and REs
• XML specification: regular expressions are deterministic 

(1-unambiguos) 

• unambiguous = each word (string) is witnessed by at most 
one sequence of positions of symbols in the expression 
that matches the word [Brügemann-Klein, Wood 1998] 

ambiguous: (a|b)*aa* 

equivalent unambiguous: (a|b)*a



DTDs and REs
• Is it enough for expressions to be only 

unambiguous? 

• No = an expression can be unambiguous but the 
matching decision has to be done by looking at 
more states in advance 

 (a|b)*a 

• without looking beyond the current symbol = 1-
unambiguous



Glushkov Automaton

Can we recognize deterministic FAs? [Brügemann-
Klein, Wood 1998] 

• a regular expression is deterministic iff its Glushkov 
automaton is deterministic 

• the Glushkov automaton can be computed in time 
quadratic in the size of the regular expression



Glushkov Automaton

• character in RE = state in an automaton + one state 
of the beginning of the RE 

• transitions show which characters can precede 
each other; incoming labels can only be the labels 
of the state 

• construction is quadratic timeO(m2)



Glushkov Automaton

• What is the Glushkov automaton for: 

a(b|c)(b|d)*



DTD: Validation Using FA
General algorithm for DTD (top-down): 

1. for each <!ELEMENT… create its deterministic 
automaton A 

2. for each element in document D, match the 
children using its corresponding automaton 

3. if one does not match = document invalid 

4. if all match = document valid



DTD: Validation Using FA
Why does this work? 

• label-guarded subtree exchange property = trees obtained 
by exchanging the subtrees rooted at v1 and v2 are in the 
same languages if v1 and v2 have the same label lab

38

DTDs have the

“label-guarded subtree exchange ” property:

t1, t2    trees in a DTD language T
v1        node in t1, labeled “lab”
v2        node in t2, labeled “lab”

trees obtained by exchanging the subtrees 
rooted at v1 and v2 are also in T

lab lab

t1 t2

v1 v2

aka “local”
Æ content model 
only depends on 
label of parent



DTD Validation: Example



DTD: Limits
• DTD is compact, easy to understand, easy to validate 

(with the W3C restrictions…) 

• But:  

1. it is not in XML (dealing with another language) 

2. no distinguishable types (everything is characters) 

3. no value constraints (cardinality of sequences) 

4. no built-in scoping (elements only used in subtrees)



XML Schema



XML Schema
• W3C Standard — schema description language that 

goes beyond the capabilities of the DTD 

• XML Schema specifications are XML documents 
themselves 

• XML Schema has built-in data types (based on Java 
and SQL types) 

• control over the values a data type can assume 

• users can define their own data types



XML Schema Constructs
• declaring an element (by default, can only contain string values) 

<xsd:element name=“author" /> 

• bounded occurrences (absence of minOccurs / maxOccurs implies 
once) 

<xsd:element name=“address" minOccurs=“1” 
maxOccurs=“unbounded” /> 

• types (considered atomic with respect to the schema) 

<xsd:element name=“year" type=“xsd:date” /> 

other types: string, boolean, number, float, duration, time, base64binary, 
AnyURI, …



XML Schema Constructs
• non atomic complex types are built from simple types using type 

constructors  

<xsd:complexType name=“Persons"> 

<xsd:sequence> 

<xsd:element name=“person" minOccurs=“0" 
maxOccurs=“unbounded”/> 

</xsd:sequence> 

</xsd:complexType> 

<xsd:element name=“persons" type=“Persons" />



XML Schema Constructs
• new complex types can be derived from an existing type 

(see specification) 

• attributes are declared within the element 

<xsd:element name=“book”> 

<xsd:attribute name=“title" /> 

<xsd:attribute name=“year" type=“xsd:gYear”/
> 

</xsd:element>



XML Schema Example
• What is the schema of this XML?



Tree Automata for XML 
Validation



Validating XML In General

• FA on strings (words) are very good and very 
efficient for DTDs (and, as we will see, for XPath) 

• But what about XML schema? Or any other schema 
language? 

• Is there a formalism / structure that can validate 
XML in general?



Tree Automata

Two types: 

1. on ranked trees: each node has a bounded 
number of children; each XML can be transformed 
by using the first child - next sibling encoding 
(more later) 

2. on unranked trees: no bound on the number of 
children; better suited (directly) to XML, 



Binary Tree AutomataTree automata Ranked tree automata

Binary tree automata

Bottom-up non-deterministic tree automata
A non-deterministic bottom-up tree automata is a 4-tuple
A = ( ! ,Q,F , " ) where

! is an alphabet. We usually distinguish between two disjoint
alphabets : a leaf alphabet (! leaf ) and an internal one (! internal ).
Q is a set of states.
F is a set of accepting states F ⊆ Q.
" is a set of transition rules having one of the forms :

l → q when l ∈ ! leaf
a(q1, q2) → q when a ∈ ! internal

Mirian Halfeld Ferrari (IT4BI) XML-Automata 17 février 2015 25 / 58



Binary Tree Automata: 
Semantics

• the semantics of automata A are described in 
terms of a run 

• a run = a mapping from the domain of Q (states) 
such that for each p we have r(p) in Q 

• a run is accepting if the state of the root is one of 
the final states



Automata Example
Tree automata Ranked tree automata

Example

Let A = ({a, l}, {q0, q1}, {q0},∆) where

∆ =

!
"

#

a(q1, q1) ! q0

a(q0, q0) ! q1

l ! q1

l

a

a

a

ll

a

ll
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Tree Languages

• The language L(A)  is the set of trees accepted by 
A 

• A language accepted by a bottom-up tree 
automaton is called a regular tree language



Top-Down Tree AutomataTree automata Ranked tree automata

Top-down tree automata

Binary top-down tree automata
A non-deterministic top-down tree automata is a 5-tuple
A = ( ! ,Q, I,F , " ) where

! is an alphabet.
Q is a set of states.
I ! Q is a set of initial states.
F is a set of accepting states F ! Q.
" is a set of transition rules having the form :

q " a(q1, q2).
where a # ! and q, q1, q2 # Q

Mirian Halfeld Ferrari (IT4BI) XML-Automata 17 février 2015 30 / 58



Top-DownTree Automata: 
Semantics

Tree automata Ranked tree automata

Top down tree automata - semantics

Run
A run of top-down automaton A = ( ! ,Q, I,F , " ) on a binary tree t
is a mapping r : dom(t) → Q such that

r (! ) ∈ I ;
for each node p with label a, rule r (p) → a(r (p.0), r (p.1)) is in " .

A run is accepting if for all leaves p we have r (p) ∈ F .

Deterministic binary top-down automata
We say that a binary tree automaton is (top-down) deterministic if I is
a singleton and for each a ∈ ! and q ∈ Q there is at most one
transition rule of the form q → a(q1, q2).

Mirian Halfeld Ferrari (IT4BI) XML-Automata 17 février 2015 31 / 58



Automata Example
Tree automata Ranked tree automata

Example

Let A = ( {a, l} , {q0,q1} , {q0} , {q1} ,∆) where

∆ =
{

q0 ! a(q1,q1)
q1 ! a(q0,q0)

Note : In general this tree automaton accepts trees in which every leaf
is at an even depth.

l
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a

ll

a

ll
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Regular Tree Languages
The following statements are equivalent: 

• L is a regular tree language 

• L is accepted by a non-deterministic bottom-up tree 
automaton 

• L is accepted by a deterministic bottom-up automaton 

• L is accepted by a non-deterministic top-down 
automaton



Regular Tree Languages

Generally, the same results as for regular word/string 
languages (FA): 

• given a tree automaton, one can find an equivalent 
bottom-up automaton that is deterministic (with 
exponential blowup) 

• regular tree languages are closed under 
complement, intersection and union



Ranked Tree Automata

• We can represent any unranked tree (XML) by a 
binary tree where the left child is the first child and 
the right child is the next sibling 

• Called first-child next-sibling encoding (not the only 
one)



XML — Ranked TreeTree automata Ranked tree automata

person

1stName

name gender

name genderlastName

1stName lastName
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Relation Between Ranked 
and Unranked Tree Automata

• For each unranked tree automaton, there exists a 
ranked tree automaton accepting the encoding of 
the XML in first child — next sibling 

• For each ranked tree automaton, there exists an 
unranked tree automaton accepting the unranked 
tree seconded from first child — next sibling 
encoding



Unranked Bottom-Up Tree 
Automata

Tree automata Unranked tree automata

Unranked bottom-up tree automata

Non-deterministic bottom-up tree automata
A non-deterministic bottom-up tree automaton is a 4-tuple
A = (Σ,Q,F ,∆) where Σ is an alphabet, Q is a set of states, F ⊆ Q is
a set of final states an ∆ is a set of transition rules of the form

a[E ] → q

where a ∈ Σ, E is a regular expression over Q and q ∈ Q

Mirian Halfeld Ferrari (IT4BI) XML-Automata 17 février 2015 40 / 58



Unranked Bottom-Up Tree 
Automata: Semantics

Tree automata Unranked tree automata

Unranked tree automata - semantics

Let A = ( ! , Q, F , " ) be an unranked tree automata.
The semantics of A is described in terms of runs
Given an unranked tree t , a run of A on t is a mapping from
dom(t) to Q where, for each position p whose children are at
positions p0, . . . , p(n ! 1) (with n " 0), we have r (p) = q if all the
following conditions hold :

t(p) = a # ! ,
the mapping r is already defined for the children of p, i.e.,
r (p.0) = q0, . . . , r (p.(n ! 1)) = qn! 1 and
the word q0.q1 . . . qn! 1 is in L(E).

A run r is successful if r (ϵ) is a final state.

Mirian Halfeld Ferrari (IT4BI) XML-Automata 17 février 2015 41 / 58



Automata Example
Tree automata Unranked tree automata

Example

Let A = ( {a, l} , {qa,qc ,ql } , {qa} , ! ) where

! =

!
"

#

a [q!
a.q!

l .(qc | ϵ)] ! qa
c [ql ] ! qc
l [ϵ] ! ql Special rule for leaves

a

a

ll

a

ll

a

l

l c
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Schemas and Tree 
Grammars

• Schemas for XML documents can be formally 
expressed by Regular Tree Grammars (RTG)

Classes of Schemas and Validation Classes of Schemas and corresponding tree automata

Schemas and tree grammar

Regular Tree Grammar (RTG)

A regular tree grammar (RTG) is a 4-tuple G = ( N,T ,S,P), where :

N is a Þnite set ofnon-terminal symbols ;

T is a Þnite set of terminal symbols ;

S is a set of start symbols, where S ! N and

P is a Þnite set ofproduction rules of the form X " a [R], where
X # N, a # T , and R is a regular expression over N.

(We say that, for a production rule, X is the left-hand side, a R is the
right-hand side, and R is the content model.)

Schemas

Schemas for XML documents can be formally expressed by RTG.
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Grammar ExampleClasses of Schemas and Validation Classes of Schemas and corresponding tree automata

Example

P1

Dir ! directory[Person! ]
Person ! student[DirA | DirB])
Person ! professor [DirB]
DirA ! direction[Name.Number?.Add?]
DirB ! direction[Name.Add?.Phone! ]

Mirian Halfeld Ferrari (IT4BI) XML-Automata 17 février 2015 46 / 58



Competing Non-Terminals
Two different non-terminals A and B (of the same 
grammar G) are said to be competing with each other if: 

• a production rule has A in the left-hand side, 

• another production rule has B in the left-hand side, and 

• these two production rules share the same terminal 
symbol in the right-hand side. 

Same definition for automata — states are competing if 
they have the same label and different transition rules



Grammar ExampleClasses of Schemas and Validation Classes of Schemas and corresponding tree automata

Example

P1 ! 1

Dir ! directory [Person! ] directory [q!
person] ! qdir

Person ! student [DirA | DirB]) student [qdirA | qdirB] ! qperson

Person ! professor [DirB] professor [qdirB] ! qperson

DirA ! direction[Name.Number?.Add?] direction[qname.qnumber?.qadd?] ! qdirA

DirB ! direction[Name.Add?.Phone! ] direction[qname.qadd?.q!
phone] ! qdirB
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Local Tree Grammar
• A local tree grammar (LTG) is a 
regular tree grammar that does not 
have competing non-terminals 

• A local tree language (LTL) is a 
language that can be generated by 
at least one LTG



Grammar Example
Classes of Schemas and Validation Classes of Schemas and corresponding tree automata

Example

P3 ∆3

Dir → directory [Student ! .Professor ! ] directory [q!
stud .q!

prof ] → qdir
Student → student [Name.Number?.Add?] student [qname.qnumber?.qadd?] → qstud
Professor → professor [Name.Add?.Phone! ] professor [qname.qadd?.q!

phone] → qprof
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Single-Type Tree Grammar
A single type tree grammar (STTG) is a regular tree 
grammar, where: 

• for each production rule, non terminals in its regular 
expression do not compete with each other, and 

• start symbols do not compete with each other. 

A single-type tree language (STTL) is a language that an 
be generated by at least one STTG.



Grammar Example
Classes of Schemas and Validation Classes of Schemas and corresponding tree automata

Example

P2 ∆2

Dir → directory [Person! ] directory [q!
person] → qdir

Person → student [DirA]) student [qdirA] → qperson
Person → professor [DirB] professor [qdirB] → qperson
DirA→ direction[Name.Number?.Add?] direction[qname.qnumber?.qadd?] → qdirA
DirB → direction[Name.Add?.Phone! ] direction[qname.qadd?.q!

phone] → qdirB
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Classes of Regular 
Languages

• LTL and STTL are closed under intersection but not 
union; RTL closed under union, intersection and 
difference

Classes of Schemas and Validation Classes of Schemas and corresponding tree automata

Classes of regular languages

Expression power
LTL ⊂ STTL ⊂ RTL

Properties
The LTL and STTL are closed under intersection but not under union ;
while the RTL are closed under union, intersection and difference.
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XML Schema Languages

Grammar Schema Language

LTG DTD

STTG XML Schema

RTG RelaxNG



General Validation Algorithm
A run associates to each position p in the XML document 
a set of states in Q such that: 

1. there exists a transition rule to a state in Q from a 
label a 

2. the label at p is a 

3. the string of the children labels matches the RE in the 
transition rule 

A run is successful if it contains at least one final state.



Simplified Versions for  
LTG and STTG

• LTG: the sets of states are always singletons, only 
one rule for each label 

• STTG: the results of a run can consider just a single 
type for each node of the tree



Validation ExampleValidating XML views

0
Customer

ϵ
Shop

00 01 02
NameidCust idInvoices

10

1
Invoice

100

invoiceNb

000 010 020
qdata qdata qdata qdata Transition rules:

idCust, (∅, ∅), qdata → qidCust

idInvoices, (∅, ∅), qdata → qidInvoices

Name, (∅, ∅), qdata → qName

invoiceNb, (∅, ∅), qdata → qinvoiceNb
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Validating XML views

0
Customer

ϵ
Shop

00 01 02 10

1
Invoice

100000 010 020
qdata qdata qdata qdata

qidCust qidInvoices qName qinvoiceNb

Transition rules:
Customer,

({qidCust}, {qidInvoices}), qName

→ qCustomer

Invoice, ({qinvoiceNb}, ∅), ∅ → qInvoice
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Validating XML views

ϵ
Shop

00 01 02 10

1

100000 010 020
qdata qdata qdata qdata

qidCust qidInvoices qName qinvoiceNb

0
qCustomer qInvoice

Transition rule:
Shop, (∅, ∅), q∗Customerq∗Invoice → qShop
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