[]
universite
PARIS-SACLAY

Algorithms for Data Science
Frequent Itemsets and Association Rules

Silviu Maniu
September 11th, 2020

Université Paris-Saclay

1/24

Table of contents

The Market-Basket Model

2/24

Market-Basket Model

We have a large set of items (things sold in shops, markets,
supermarkets)

Large set of baskets (people buying things all at the same time), each
having a small subset of items

We have two data mining tasks:

1. we want to find items that are frequently bought together

2. we want to find association rules (“people who buy X also buy Y”)

3/24

Frequent Items in Practice

+ 1item added to Cart

Fodor's Ireland 2015 (Full-colar

Travel Guide) Order subtotal: $19.07 eem——
by Fodors 1 ftemin your Cart _—
1907

§ Add $1583 of eiible tems fo your order to qualfy for FREE Shipping

[0 Tris s it Loarn more

(Some: restrictions apply)
G
2 $g'° AMAZON.COM Credit Card
100 &iFf seammore Mrkelplace
citer your opproval and first purchase within 3 morthe “Rosicaon appi atamazon

Frequ amly Bought With Fodor's Ireland 2015 (Full-color Travel Guide)

l gml 5 E

Fromme’s Iretand 2015 (Calor Rick Steves Ireland 2015 Fodor's Essentisl Great Britain: with Fodor's Scotlend (Travel Guide)
Complete Guide) by Rick Steves the Best... by Fodor's

by Jack Jawers Faperback by Fodor's Paperback

Paperhack + 8 Paperback ¥ 1

drirdrdrir 5 $2200317.35 dririndy 2 320051718

$2205517.00 42 New & 20 Used from $11.84 3240051007 42 New & 34 Used from $11.84
37 New & 12 Used from $12.73 ‘Wl 44 New & 31 Used from $13.77 @

Ao Cart Adto Cart

Customers Who Bought Fodor's lreland 2015 (Full-color Travel Guide) Also Bought

IRELAND

i

Back Roads Irelsnd (EYEWITNESS

e
Fodors England 2015: with the Best DK Eyewitness Travel Guide:

of.. reland by Lanely Flenet TRAVEL BACK ROADS)
by Fodors by DK Publishing Paperback by DX Publishing
Paperback Paperback Paperback

iy 30

$2480512.25 AT 10

4/24

Association Rules in Practice

Used in supermarket shelf placement

5/24

Other Applications

Plagiarism: baskets are sentences, items are documents containing
the sentences

- Items appearing together too often could be plagiarism

Side-effects in drug combinations: baskets are patients; items are
drugs and their side effects

6/24

Frequent Itemsets

A set of items that appears in many baskets is said to be frequent

Set of items Z, itemset | € Z, set of baskets B, basket B € B
Support of itemset I: number of baskets containing all items in I

supp(l) = [{B | I € B}

Problem: given a support threshold s, we call itemset appearing in at
least s baskets — or having support s — frequent itemsets

7/24

ltems Z = {m, c,p, b,j}, baskets B

B; = {m,c,b} Bs = {m,p,b}
B, = {m,p.j} Bs = {m, c,b,j}
B3 = {m,b} B; = {c,b.j}
B, ={c.j} Bs = {b.j}

Support of itemset | = {m, b}: supp(l) = 4 (appears in By, B, Bs, Bg)
For a support threshold of 3:

- frequent itemsets: {m}, {c}, {b}, {j}, {m, b}, {b,c}, {c,j}

8/24

Association Rules

Association rules - correlations in the contents of baskets

- written as {iq, I, ..., I} — j = “if a basket contains {is,Is,...,Ip}
then it is likely to contain j also

There can be many rules, we only care about interesting ones:

- confidence of an association rule:

supp(lU {j})

conf(l —j) = supp(l)

9/24

Association Rules

Association rules - correlations in the contents of baskets

- written as {iq, I, ..., I} — j = “if a basket contains {is,Is,...,Ip}
then it is likely to contain j also

There can be many rules, we only care about interesting ones:

- interest of an association rule:

supp({J})

interest(l — j) = conf(l — j) — Pr[j] = conf(l —j) — B

10/24

ltems Z = {m, c,p, b,j}, baskets B

By ={m,c,b} Bs = {m,p,b}
B, ={m,p,j} Bs = {m,c.b,j}
B; = {m,b} B; ={c,b,j}
B, = {c.j} Bs = {b,j}

Association rule A: {m,b} — ¢
- confidence conf(A) = % =2/4=0.5
- interest interest(A) = conf(A) — %&{C}) =2 _ 4 —=o0-notvery
interesting (we want either high positive values or low negative

values)

/24

Mining Association Rules

Problem: find all association rules having support at least s and
confidence at least ¢

- the support of an association rule I — j is equal to supp(l)

- means that finding the frequent itemsets is the main difficulty: if
| — j has high confidence and support then both I and I Uj are
frequent itemsets!

12/24

Mining Association Rules

1. Find all frequent itemsets |
2. Rule generation

- for every subset A C | generate rule A — \A: since I is frequent A
is also frequent, only have to compute the confidence

supp(!)

conf(A — NA) = SUpp(A)

- optimization: if ABC — D is below confidence threshold, then so is
AB — CD

3. Output all rules above confidence threshold

13/24

ltems Z = {m, c,p, b, j}, baskets B

B, = {m,c, b} Bs = {m,p,b}
B, = {m,p,j} Bs = {m,c,b,j}
By ={m,b} B, = {c,b,j}
B, = {c.j} Bs = {b,j}

Support s = 3; Confidence ¢ = 0.75

Frequent Itemsets:

- e {m, b}, {b,c}, {c,j}
Rule Generation:
- m— b (c=4/5),b—m(c=14/6),...

/24

Table of contents

Mining Frequent Items
Computational Issues

A-Priori Algorithm

15/24

Computational Model

We assume that the data is kept in a disk file, basket by basket

- also most likely that data does not fit in main memory
- cost model: number of accesses on the disk

Read data in batches and check subsets in main-memory:

- for pairs of items, this is feasible: O(n?) via nested-loop
processing - dominated by the disk access
- for larger sets, not feasible O(n*/R!)

- in practice, frequent items are mostly pairs or triples

In the algorithms we discuss next, we analyze only the number of
passes over the data

16/24

Counting Pairs

Pre-processing: transform item strings into ids (less space used)

Triangular Array - store the counts in an array only for pairs which
have i < j (lexicographic order)

- for pair (i,j) update count in a[R] where R = (i —1)(n —i/2) +j —1
- saves half the space

Store triples - store the (i,j, c) triple

- hash table on key i,j containing value ¢

- saves space when counts are sparse

17/24

Monotonicity of Itemsets

Monotonicity of itemsets: if an set of items I is frequent, then so is
every subset of |

B; ={m,c,b} Bs = {m,p,b}
B, = {m,p,j} Bs = {m,c,b,j}
B3 = {m, b} B, = {c,b,j}
B, = {c.j} Bs = {b,j}

Monotonicity:

- supp(m,c,b) =2
* supp(m,c) = 2; supp(m, b) = 3; supp(c,b) =3
* supp(m) = 5; supp(c) = 4 supp(b) =6

18/24

A-Priori Principles

We can focus on counting pairs - they are the main bottleneck of the
frequent items computations

A-Priori algorithm: designed to reduce the number of pairs we need
to count, at the expense of making two passes over the data
[Agrawal and Srikant, 1994]

Using monotonicity

- if item i does not have support at least s, then no super-set of i
can

- go from singletons, to pairs, to triples, etc.

19/24

A-Priori - 2 Passes

1. read baskets and count support of each item, keep items having
support at least s

2. read baskets again and count only the pairs between frequent
items

- memory quadratic only in frequent items, along with a (linear) list
of frequent items

20/24

A-Priori - 2 Passes

Frequent items

Iltem counts

g* Counts of

£ pairs of

2 frequent items
c (candidate
~ pairs)

Pass 1 Pass 2

21/24

Going Beyond Pairs

For each size of the itemset R, we have two sets of R-tuples:

- C, candidate tuples which may have support at least s using
information from pass R — 1

- Ly the truly frequent itemsets from Cg

One pass for each k - needs memory space for counts

- in practice, k = 2 requires the most memory

22/24

Support threshold s = 2

1. G ={m} {c} {b} {p} {Jj}
© Li={m} {b} {j}

By ={m,c, b} 2. G ={m,b} {b,j} {m,j}
B, = {m,p,j} - L, = {m,b} {m,j}

By = {m,b} 3. C3 = {m,b,j} (use L, and L,)
B, = {m,j} cLly=0

Frequent itemsets: L, U L,

23/24

Optimizing A-Priori

Can optimize A-Priori to use the memory more efficiently - use hash
tables on itemsets to prune sets that can be candidates:
Park-Chen-Yu algorithm [Park et al., 1995]

Fewer passes over the data:

- Random sampling: take only a part of the dataset (enough to fit
in memory) and check everything in-memory - have to update
the supports

- SON algorithm: mine batches of the dataset in-memory; compute
the real counts in the second pass — can also be use in
MapReduce [Savasere et al., 1995]

24/24

Acknowledgments

The contents and some figures taken from Chapter 6 of
[Leskovec et al., 2020]. https://www.mmds . org/

https://www.mmds.org/

References i

[§ Agrawal, R. and Srikant, R. (1994).
Fast algorithms for mining association rules in large databases.
In Proceedings of the 20th International Conference on Very Large
Data Bases (VLDB), page 487-499.

[4 Leskovec,)., Rajaraman, A, and Ullman, J. (2020).
Mining of Massive Datasets.
Cambridge University Press.

[W Park, J.S. Chen, M-S, and Yu, P. S. (1995).
An effective hash-based algorithm for mining association rules.
In Proceedings of the 1995 ACM SIGMOD International Conference
on Management of Data (SIGMOD), page 175-186.

References ii

[§ Savasere, A, Omiecinski, E., and Navathe, S. B. (1995).
An efficient algorithm for mining association rules in large
databases.
In Proceedings of the 21th International Conference on Very Large
Data Bases (VLDB), page 432-444.

	The Market-Basket Model
	Mining Frequent Items
	Computational Issues
	A-Priori Algorithm

	Appendix

