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Market-Basket Model

We have a large set of items (things sold in shops, markets,
supermarkets)

Large set of baskets (people buying things all at the same time), each
having a small subset of items

We have two data mining tasks:

1. we want to find items that are frequently bought together

2. we want to find association rules (“people who buy X also buy Y”)
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Frequent Items in Practice
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Association Rules in Practice

Used in supermarket shelf placement
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Other Applications

Plagiarism: baskets are sentences, items are documents containing
the sentences

- Items appearing together too often could be plagiarism

Side-effects in drug combinations: baskets are patients; items are
drugs and their side effects
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Frequent Itemsets

A set of items that appears in many baskets is said to be frequent

Set of items Z, itemset | € Z, set of baskets B, basket B € B
Support of itemset I: number of baskets containing all items in I

supp(l) = [{B | I € B}

Problem: given a support threshold s, we call itemset appearing in at
least s baskets — or having support s — frequent itemsets
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ltems Z = {m, c,p, b,j}, baskets B

B; = {m,c,b} Bs = {m,p,b}
B, = {m,p.j} Bs = {m, c,b,j}
B3 = {m,b} B; = {c,b.j}
B, ={c.j} Bs = {b.j}

Support of itemset | = {m, b}: supp(l) = 4 (appears in By, B, Bs, Bg)
For a support threshold of 3:

- frequent itemsets: {m}, {c}, {b}, {j}, {m, b}, {b,c}, {c,j}
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Association Rules

Association rules - correlations in the contents of baskets

- written as {iq, I, ..., I} — j = “if a basket contains {is,Is,...,Ip}
then it is likely to contain j also

There can be many rules, we only care about interesting ones:

- confidence of an association rule:

supp(lU {j})

conf(l —j) = supp(l)
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Association Rules

Association rules - correlations in the contents of baskets

- written as {iq, I, ..., I} — j = “if a basket contains {is,Is,...,Ip}
then it is likely to contain j also

There can be many rules, we only care about interesting ones:

- interest of an association rule:

supp({J})

interest(l — j) = conf(l — j) — Pr[j] = conf(l —j) — B
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ltems Z = {m, c,p, b,j}, baskets B

By ={m,c,b} Bs = {m,p,b}
B, ={m,p,j} Bs = {m,c.b,j}
B; = {m,b} B; ={c,b,j}
B, = {c.j} Bs = {b,j}

Association rule A: {m,b} — ¢
- confidence conf(A) = % =2/4=0.5
- interest interest(A) = conf(A) — %&{C}) =2 _ 4 —=o0-notvery
interesting (we want either high positive values or low negative

values)
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Mining Association Rules

Problem: find all association rules having support at least s and
confidence at least ¢

- the support of an association rule I — j is equal to supp(l)

- means that finding the frequent itemsets is the main difficulty: if
| — j has high confidence and support then both I and I Uj are
frequent itemsets!
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Mining Association Rules

1. Find all frequent itemsets |
2. Rule generation

- for every subset A C | generate rule A — \A: since I is frequent A
is also frequent, only have to compute the confidence

supp(!)

conf(A — NA) = SUpp(A)

- optimization: if ABC — D is below confidence threshold, then so is
AB — CD

3. Output all rules above confidence threshold
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ltems Z = {m, c,p, b, j}, baskets B

B, = {m,c, b} Bs = {m,p,b}
B, = {m,p,j} Bs = {m,c,b,j}
By ={m,b} B, = {c,b,j}
B, = {c.j} Bs = {b,j}

Support s = 3; Confidence ¢ = 0.75

Frequent Itemsets:

- e {m, b}, {b,c}, {c,j}
Rule Generation:
- m— b (c=4/5),b—m(c=14/6),...
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Computational Model

We assume that the data is kept in a disk file, basket by basket

- also most likely that data does not fit in main memory
- cost model: number of accesses on the disk

Read data in batches and check subsets in main-memory:

- for pairs of items, this is feasible: O(n?) via nested-loop
processing - dominated by the disk access
- for larger sets, not feasible O(n*/R!)

- in practice, frequent items are mostly pairs or triples

In the algorithms we discuss next, we analyze only the number of
passes over the data
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Counting Pairs

Pre-processing: transform item strings into ids (less space used)

Triangular Array - store the counts in an array only for pairs which
have i < j (lexicographic order)

- for pair (i,j) update count in a[R] where R = (i —1)(n —i/2) +j —1
- saves half the space

Store triples - store the (i,j, c) triple

- hash table on key i,j containing value ¢

- saves space when counts are sparse

17/24



Monotonicity of Itemsets

Monotonicity of itemsets: if an set of items I is frequent, then so is
every subset of |

B; ={m,c,b} Bs = {m,p,b}
B, = {m,p,j} Bs = {m,c,b,j}
B3 = {m, b} B, = {c,b,j}
B, = {c.j} Bs = {b,j}

Monotonicity:

- supp(m,c,b) =2
* supp(m,c) = 2; supp(m, b) = 3; supp(c,b) =3
* supp(m) = 5; supp(c) = 4 supp(b) =6
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A-Priori Principles

We can focus on counting pairs - they are the main bottleneck of the
frequent items computations

A-Priori algorithm: designed to reduce the number of pairs we need
to count, at the expense of making two passes over the data
[Agrawal and Srikant, 1994]

Using monotonicity

- if item i does not have support at least s, then no super-set of i
can

- go from singletons, to pairs, to triples, etc.
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A-Priori - 2 Passes

1. read baskets and count support of each item, keep items having
support at least s

2. read baskets again and count only the pairs between frequent
items

- memory quadratic only in frequent items, along with a (linear) list
of frequent items
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A-Priori - 2 Passes

Frequent items

Iltem counts

g* Counts of

£ pairs of

2 frequent items
c (candidate
~ pairs)

Pass 1 Pass 2
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Going Beyond Pairs

For each size of the itemset R, we have two sets of R-tuples:

- C, candidate tuples which may have support at least s using
information from pass R — 1

- Ly the truly frequent itemsets from Cg

One pass for each k - needs memory space for counts

- in practice, k = 2 requires the most memory
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Support threshold s = 2

1. G ={m} {c} {b} {p} {Jj}
© Li={m} {b} {j}

By ={m,c, b} 2. G ={m,b} {b,j} {m,j}
B, = {m,p,j} - L, = {m,b} {m,j}

By = {m,b} 3. C3 = {m,b,j} (use L, and L,)
B, = {m,j} cLly=0

Frequent itemsets: L, U L,
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Optimizing A-Priori

Can optimize A-Priori to use the memory more efficiently - use hash
tables on itemsets to prune sets that can be candidates:
Park-Chen-Yu algorithm [Park et al., 1995]

Fewer passes over the data:

- Random sampling: take only a part of the dataset (enough to fit
in memory) and check everything in-memory - have to update
the supports

- SON algorithm: mine batches of the dataset in-memory; compute
the real counts in the second pass — can also be use in
MapReduce [Savasere et al., 1995]
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